메뉴 건너뛰기




Volumn 37, Issue 7, 2018, Pages 1059-1085

A comparison of seven random-effects models for meta-analyses that estimate the summary odds ratio

Author keywords

binomial distribution; exact within study distributions; random effects models; statistical computing

Indexed keywords

BINOMIAL DISTRIBUTION; HUMAN; META ANALYSIS; REVIEW; SENSITIVITY ANALYSIS; SIMULATION; SYSTEMATIC REVIEW; COMPARATIVE STUDY; COMPUTER SIMULATION; META ANALYSIS (TOPIC); ODDS RATIO; STATISTICAL BIAS; STATISTICAL MODEL;

EID: 85042931759     PISSN: 02776715     EISSN: 10970258     Source Type: Journal    
DOI: 10.1002/sim.7588     Document Type: Review
Times cited : (153)

References (44)
  • 1
    • 82055175725 scopus 로고    scopus 로고
    • Characteristics of meta-analyses and their component studies in the Cochrane database of systematic reviews: a cross-sectional, descriptive analysis
    • Davey J, Turner RM, Clarke MJ, Higgins JPT. Characteristics of meta-analyses and their component studies in the Cochrane database of systematic reviews: a cross-sectional, descriptive analysis. BMC Med Res Methodol. 2011;11:160.
    • (2011) BMC Med Res Methodol , vol.11 , pp. 160
    • Davey, J.1    Turner, R.M.2    Clarke, M.J.3    Higgins, J.P.T.4
  • 2
    • 0002982549 scopus 로고    scopus 로고
    • Effect measures for meta-analyses of trials with binary outcomes
    • In, Egger M, Smith GD, Altman DG, eds., London, BMJ Books
    • Deeks JJ, Altman DG. Effect measures for meta-analyses of trials with binary outcomes. In: Egger M, Smith GD, Altman DG, eds. Systematic Reviews in Health Care. London: BMJ Books; 2001.
    • (2001) Systematic Reviews in Health Care
    • Deeks, J.J.1    Altman, D.G.2
  • 3
    • 0028018289 scopus 로고
    • Clinically useful measures of effect in binary analyses of randomized trials
    • Sinclair JC, Bracken MB. Clinically useful measures of effect in binary analyses of randomized trials. J Clin Epidemiol. 1994;47:881-889.
    • (1994) J Clin Epidemiol , vol.47 , pp. 881-889
    • Sinclair, J.C.1    Bracken, M.B.2
  • 4
    • 64549090671 scopus 로고    scopus 로고
    • Why add anything to nothing? The arcsine difference as a measure of treatment effect in meta-analysis with zero cells
    • Rücker G, Schwarzer G, Carpenter J, Olkin I. Why add anything to nothing? The arcsine difference as a measure of treatment effect in meta-analysis with zero cells. Stat Med. 2009;28:721-738.
    • (2009) Stat Med , vol.28 , pp. 721-738
    • Rücker, G.1    Schwarzer, G.2    Carpenter, J.3    Olkin, I.4
  • 5
    • 0037098201 scopus 로고    scopus 로고
    • Issues in the selection of a summary statistic for meta-analysis of clinical trials with binary outcomes
    • Deeks JJ. Issues in the selection of a summary statistic for meta-analysis of clinical trials with binary outcomes. Stat Med. 2002;21:1575-1600.
    • (2002) Stat Med , vol.21 , pp. 1575-1600
    • Deeks, J.J.1
  • 6
    • 84873995630 scopus 로고    scopus 로고
    • A sensitivity analysis framework for the treatment effect measure used in the meta-analysis of comparative binary data from randomised controlled trials
    • Jackson D, Baker R, Bowden J. A sensitivity analysis framework for the treatment effect measure used in the meta-analysis of comparative binary data from randomised controlled trials. Stat Med. 2013;32:931-940.
    • (2013) Stat Med , vol.32 , pp. 931-940
    • Jackson, D.1    Baker, R.2    Bowden, J.3
  • 8
    • 84959266078 scopus 로고    scopus 로고
    • Misunderstandings about Q and ‘Cochran's Q test' in meta-analysis
    • Hoaglin DC. Misunderstandings about Q and ‘Cochran's Q test' in meta-analysis. Stat Med. 2016;16:485-495.
    • (2016) Stat Med , vol.16 , pp. 485-495
    • Hoaglin, D.C.1
  • 9
    • 84953240629 scopus 로고    scopus 로고
    • Low-event-rate meta-analyses of clinical trials: implementing good practices
    • Shuster JJ, Walker MA. Low-event-rate meta-analyses of clinical trials: implementing good practices. Stat Med. 2016;35:2467-2478.
    • (2016) Stat Med , vol.35 , pp. 2467-2478
    • Shuster, J.J.1    Walker, M.A.2
  • 10
    • 84995794417 scopus 로고    scopus 로고
    • A general framework for the use of logistic regression models in meta-analysis
    • Simmonds M, Higgins JPT. A general framework for the use of logistic regression models in meta-analysis. Stat Methods Med Res. 2016;35:2858-2877.
    • (2016) Stat Methods Med Res , vol.35 , pp. 2858-2877
    • Simmonds, M.1    Higgins, J.P.T.2
  • 12
    • 78649672029 scopus 로고    scopus 로고
    • Random effects meta-analysis of event outcome in the framework of the generalized linear mixed model with applications in sparse data
    • Stijnen T, Taye HH, Özdemir P. Random effects meta-analysis of event outcome in the framework of the generalized linear mixed model with applications in sparse data. Stat Med. 2010;29:3046-3067.
    • (2010) Stat Med , vol.29 , pp. 3046-3067
    • Stijnen, T.1    Taye, H.H.2    Özdemir, P.3
  • 14
    • 77958110812 scopus 로고    scopus 로고
    • Conducting meta-analyses in R with the metafor package
    • Viechtbauer W. Conducting meta-analyses in R with the metafor package. J Stat Softw. 2010;36:1-48.
    • (2010) J Stat Softw , vol.36 , pp. 1-48
    • Viechtbauer, W.1
  • 15
    • 85006341153 scopus 로고    scopus 로고
    • Statistical methods for meta-analyses including information from studies without any events—add nothing to nothing and succeed nevertheless
    • Kuss O. Statistical methods for meta-analyses including information from studies without any events—add nothing to nothing and succeed nevertheless. Stat Med. 2015;34:1097-1116.
    • (2015) Stat Med , vol.34 , pp. 1097-1116
    • Kuss, O.1
  • 16
    • 27944450011 scopus 로고    scopus 로고
    • The interpretation of random-effects meta-analysis in decision models
    • Ades AE, Lu G, Higgins JP. The interpretation of random-effects meta-analysis in decision models. Med Decis Making. 2005;25:646-654.
    • (2005) Med Decis Making , vol.25 , pp. 646-654
    • Ades, A.E.1    Lu, G.2    Higgins, J.P.3
  • 17
    • 0035977414 scopus 로고    scopus 로고
    • A refined method for the meta-analysis of controlled clinical trials with binary outcome
    • Hartung J, Knapp G. A refined method for the meta-analysis of controlled clinical trials with binary outcome. Stat Med. 2001;20:3875-3889.
    • (2001) Stat Med , vol.20 , pp. 3875-3889
    • Hartung, J.1    Knapp, G.2
  • 18
    • 81955161941 scopus 로고    scopus 로고
    • Confidence intervals for a random-effects meta-analysis based on Bartlett-type corrections
    • Noma H. Confidence intervals for a random-effects meta-analysis based on Bartlett-type corrections. Stat Med. 2011;30:3304-3312.
    • (2011) Stat Med , vol.30 , pp. 3304-3312
    • Noma, H.1
  • 19
    • 84959297600 scopus 로고    scopus 로고
    • Methods to estimate the between-study variance and its uncertainty in meta-analysis
    • Veroniki AA, Jackson D, Viechtbauer W, et al. Methods to estimate the between-study variance and its uncertainty in meta-analysis. Res Synth Methods. 2016;7:55-79.
    • (2016) Res Synth Methods , vol.7 , pp. 55-79
    • Veroniki, A.A.1    Jackson, D.2    Viechtbauer, W.3
  • 21
    • 27544512687 scopus 로고    scopus 로고
    • Bias and efficiency of meta-analytic variance estimators in the random-effects model
    • Viechtbauer W. Bias and efficiency of meta-analytic variance estimators in the random-effects model. J Educ Behav Stat. 2005;30:261-293.
    • (2005) J Educ Behav Stat , vol.30 , pp. 261-293
    • Viechtbauer, W.1
  • 22
    • 0034736559 scopus 로고    scopus 로고
    • A multilevel model framework for meta-analysis of clinical trials with binary outcomes
    • Turner RM, Omar RZ, Yang M, Goldstein H, Thompson SG. A multilevel model framework for meta-analysis of clinical trials with binary outcomes. Stat Med. 2000;19:3417-3432.
    • (2000) Stat Med , vol.19 , pp. 3417-3432
    • Turner, R.M.1    Omar, R.Z.2    Yang, M.3    Goldstein, H.4    Thompson, S.G.5
  • 24
    • 0021909115 scopus 로고
    • Beta blockade during and after myocardial infarction: an overview of the randomized trials
    • Yusuf S, Peto R, Lewis J, Collins R, Sleight P. Beta blockade during and after myocardial infarction: an overview of the randomized trials. Prog Cardiovasc Dis. 1985;27:335-371.
    • (1985) Prog Cardiovasc Dis , vol.27 , pp. 335-371
    • Yusuf, S.1    Peto, R.2    Lewis, J.3    Collins, R.4    Sleight, P.5
  • 25
    • 85006479381 scopus 로고    scopus 로고
    • Bias in the Peto one-step estimator for the common odds ratio
    • Sato T. Bias in the Peto one-step estimator for the common odds ratio. Bull Inf Cybern. 2005;37:13-18.
    • (2005) Bull Inf Cybern , vol.37 , pp. 13-18
    • Sato, T.1
  • 26
    • 84933680039 scopus 로고    scopus 로고
    • Meta-analysis of clinical trials with rare events
    • Bohning D, Mylona K, Kimber A. Meta-analysis of clinical trials with rare events. Biom J. 2015;52:633-648.
    • (2015) Biom J , vol.52 , pp. 633-648
    • Bohning, D.1    Mylona, K.2    Kimber, A.3
  • 27
    • 0029612242 scopus 로고
    • Bayesian approaches to random-effects meta-analysis: a comparative study
    • Smith TC, Spiegelhalter DJ, Thomas A. Bayesian approaches to random-effects meta-analysis: a comparative study. Stat Med. 1995;14:2685-2699.
    • (1995) Stat Med , vol.14 , pp. 2685-2699
    • Smith, T.C.1    Spiegelhalter, D.J.2    Thomas, A.3
  • 28
    • 77952577480 scopus 로고    scopus 로고
    • Hans Van Houwelingen and the art of summing up
    • Senn S. Hans Van Houwelingen and the art of summing up. Biom J. 2010;52:85-94.
    • (2010) Biom J , vol.52 , pp. 85-94
    • Senn, S.1
  • 29
    • 84928914308 scopus 로고    scopus 로고
    • Elucidating the foundations of statistical inference with 2×2 tables
    • Choi L, Blume JD, Dupont WD. Elucidating the foundations of statistical inference with 2×2 tables. Plos One. 2015;10:e0121263.
    • (2015) Plos One , vol.10
    • Choi, L.1    Blume, J.D.2    Dupont, W.D.3
  • 30
    • 84893090093 scopus 로고    scopus 로고
    • Antibiotics for preventing complications in children with measles
    • CD001477
    • Kabra SK, Lodha R, Hilton DJ. Antibiotics for preventing complications in children with measles. Cochrane Database Syst Rev. 2008. CD001477. https://doi.org/10.1002/14651858.cd001477.pub3.
    • (2008) Cochrane Database Syst Rev
    • Kabra, S.K.1    Lodha, R.2    Hilton, D.J.3
  • 31
    • 61749099575 scopus 로고    scopus 로고
    • A re-evaluation of the ‘quantile approximation method’ for random effects meta-analysis
    • Jackson D, Bowden J. A re-evaluation of the ‘quantile approximation method’ for random effects meta-analysis. Stat Med. 2009;28:338-348.
    • (2009) Stat Med , vol.28 , pp. 338-348
    • Jackson, D.1    Bowden, J.2
  • 32
    • 85012876837 scopus 로고    scopus 로고
    • A comparison of analytic approaches for individual patient data meta-analyses with binary outcomes
    • Thomas D, Platt R, Benedetti A. A comparison of analytic approaches for individual patient data meta-analyses with binary outcomes. BMC Med Res Methodol. 2017;17:28.
    • (2017) BMC Med Res Methodol , vol.17 , pp. 28
    • Thomas, D.1    Platt, R.2    Benedetti, A.3
  • 33
    • 0035970794 scopus 로고    scopus 로고
    • A comparison of statistical methods for meta-analysis
    • Brockwell SE, Gordon IR. A comparison of statistical methods for meta-analysis. Stat Med. 2001;20:825-840.
    • (2001) Stat Med , vol.20 , pp. 825-840
    • Brockwell, S.E.1    Gordon, I.R.2
  • 34
    • 35648955091 scopus 로고    scopus 로고
    • A simple method for inference on an overall effect in meta-analysis
    • Brockwell SE, Gordon IR. A simple method for inference on an overall effect in meta-analysis. Stat Med. 2007;26:4531-4543.
    • (2007) Stat Med , vol.26 , pp. 4531-4543
    • Brockwell, S.E.1    Gordon, I.R.2
  • 35
    • 77952828976 scopus 로고    scopus 로고
    • Extending DerSimonian and Laird's methodology to perform multivariate random-effect meta-analyses
    • Jackson D, White IR, Thompson SG. Extending DerSimonian and Laird's methodology to perform multivariate random-effect meta-analyses. Stat Med. 2010;29:1282-1297.
    • (2010) Stat Med , vol.29 , pp. 1282-1297
    • Jackson, D.1    White, I.R.2    Thompson, S.G.3
  • 36
    • 84956583945 scopus 로고    scopus 로고
    • Extending DerSimonian and Laird's methodology to perform network meta-analysis with random inconsistency effects
    • Jackson D, Law M, Barrett JK, et al. Extending DerSimonian and Laird's methodology to perform network meta-analysis with random inconsistency effects. Stat Med. 2016;35:819-389.
    • (2016) Stat Med , vol.35 , pp. 389-819
    • Jackson, D.1    Law, M.2    Barrett, J.K.3
  • 37
    • 0037098199 scopus 로고    scopus 로고
    • Quantifying heterogeneity in a meta-analysis
    • Higgins JPT, Thompson SG. Quantifying heterogeneity in a meta-analysis. Stat Med. 2002;21:1539-1558.
    • (2002) Stat Med , vol.21 , pp. 1539-1558
    • Higgins, J.P.T.1    Thompson, S.G.2
  • 38
    • 77957668910 scopus 로고    scopus 로고
    • simsum: analyses of simulation studies including Monte Carlo error
    • White I. simsum: analyses of simulation studies including Monte Carlo error. Stata J. 2010;10:369-385.
    • (2010) Stata J , vol.10 , pp. 369-385
    • White, I.1
  • 39
    • 34047237099 scopus 로고    scopus 로고
    • A comparison of heterogeneity variance estimators in combining results of studies
    • Sidik K, Jonkman NK. A comparison of heterogeneity variance estimators in combining results of studies. Stat Med. 2007;26:1964-1981.
    • (2007) Stat Med , vol.26 , pp. 1964-1981
    • Sidik, K.1    Jonkman, N.K.2
  • 40
    • 33846260745 scopus 로고    scopus 로고
    • Much ado about nothing: a comparison of the performance of analytical methods with rare events
    • Bradburn MJ, Deeks JJ, Berlin JA, Localio AR. Much ado about nothing: a comparison of the performance of analytical methods with rare events. Stat Med. 2007;26:53-77.
    • (2007) Stat Med , vol.26 , pp. 53-77
    • Bradburn, M.J.1    Deeks, J.J.2    Berlin, J.A.3    Localio, A.R.4
  • 41
    • 84959268633 scopus 로고    scopus 로고
    • Absolute or relative effects? Arm-based synthesis of trial data
    • Dias S, Ades AE. Absolute or relative effects? Arm-based synthesis of trial data. Res Synth Methods. 2016;7:23-28.
    • (2016) Res Synth Methods , vol.7 , pp. 23-28
    • Dias, S.1    Ades, A.E.2
  • 42
    • 84959284564 scopus 로고    scopus 로고
    • Rejoinder to the discussion of “a Bayesian missing data framework for generalized multiple outcome mixed treatment comparisons,” by S. Dias and A.E. Ades
    • Hong H, Chu H, Zhang J, Carlin BP. Rejoinder to the discussion of “a Bayesian missing data framework for generalized multiple outcome mixed treatment comparisons,” by S. Dias and A.E. Ades. Res Synth Methods. 2006;7:29-33.
    • (2006) Res Synth Methods , vol.7 , pp. 29-33
    • Hong, H.1    Chu, H.2    Zhang, J.3    Carlin, B.P.4
  • 43
    • 84991503861 scopus 로고    scopus 로고
    • Meta-analysis using individual participant data: one-stage and two-stage approaches, and why they may differ
    • Burke DL, Ensor J, Riley RD. Meta-analysis using individual participant data: one-stage and two-stage approaches, and why they may differ. Stat Med. 2017;36:855-875.
    • (2017) Stat Med , vol.36 , pp. 855-875
    • Burke, D.L.1    Ensor, J.2    Riley, R.D.3
  • 44
    • 0022966316 scopus 로고
    • Unbalanced repeated-measures models with structured covariance matrices
    • Jennrich RI, Schluchter MD. Unbalanced repeated-measures models with structured covariance matrices. Biometrics. 1986;42:805-820.
    • (1986) Biometrics , vol.42 , pp. 805-820
    • Jennrich, R.I.1    Schluchter, M.D.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.