-
1
-
-
10044291661
-
-
Proceedings of the 18th International Conference on Pattern Recognition, Cambridge, England, August 22–26,. 1
-
Bernado-Mansilla E., Ho T. K., (2004). On classifier domains of competence. Proceedings of the 18th International Conference on Pattern Recognition, Cambridge, England, August 22–26, Vol. 1, pp. 136–139.
-
(2004)
On classifier domains of competence
, pp. 136-139
-
-
Bernado-Mansilla, E.1
Ho, T.K.2
-
4
-
-
34250744208
-
An empirical comparison of supervised learning algorithms
-
Cohen W., Moore A., (eds), ICML ’06, New York, NY, Association for Computing Machinery, (Eds.), (,., –
-
Caruana R., Niculescu-Mizil A., (2006). An empirical comparison of supervised learning algorithms. In Cohen W., Moore A., (Eds.), Proceedings of the 23rd International Conference on Machine learning (ICML ’06, pp. 161–168). New York, NY: Association for Computing Machinery.
-
(2006)
Proceedings of the 23rd International Conference on Machine learning
, pp. 161-168
-
-
Caruana, R.1
Niculescu-Mizil, A.2
-
5
-
-
77950681306
-
A regression paradox for linear models: Sufficient conditions and relation to Simpson’s paradox
-
Chen A., Bengtsson T., Ho T. K., (2009). A regression paradox for linear models: Sufficient conditions and relation to Simpson’s paradox. The American Statistician, 63, 218–225.
-
(2009)
The American Statistician
, vol.63
, pp. 218-225
-
-
Chen, A.1
Bengtsson, T.2
Ho, T.K.3
-
7
-
-
84937849144
-
Generative adversarial nets
-
…
-
Goodfellow I. J., Pouget-Abadie J., Mirza M., Xu B., Warde-Farley D., Ozair S., …Bengio Y., (2014). Generative adversarial nets. Proceedings of NIPS, pp. 2672–2680.
-
(2014)
Proceedings of NIPS
, pp. 2672-2680
-
-
Goodfellow, I.J.1
Pouget-Abadie, J.2
Mirza, M.3
Xu, B.4
Warde-Farley, D.5
Ozair, S.6
-
8
-
-
0003684449
-
-
New York, NY, Springer
-
Hastie T., Tibshirani R., Friedman J., (2009). The elements of statistical learning: Data mining, inference, and prediction. New York, NY: Springer.
-
(2009)
The elements of statistical learning: Data mining, inference, and prediction
-
-
Hastie, T.1
Tibshirani, R.2
Friedman, J.3
-
9
-
-
84930630277
-
Deep learning
-
LeCun Y., Bengio Y., Hinton G., (2015). Deep learning. Nature, 521, 436.
-
(2015)
Nature
, vol.521
, pp. 436
-
-
LeCun, Y.1
Bengio, Y.2
Hinton, G.3
-
10
-
-
80555140075
-
Scikit-learn: Machine learning in Python
-
…
-
Pedregosa F., Varoquaux G., Gramfort A., Michel V., Thirion B., Grisel O., …Vanderplas J., (2011). Scikit-learn: Machine learning in Python. Journal of Machine Learning Research, 12, 2825–2830.
-
(2011)
Journal of Machine Learning Research
, vol.12
, pp. 2825-2830
-
-
Pedregosa, F.1
Varoquaux, G.2
Gramfort, A.3
Michel, V.4
Thirion, B.5
Grisel, O.6
-
11
-
-
85061448555
-
-
September, 6, Retrieved from
-
Robinson D., (2017, September 6). The incredible growth of Python. Retrieved from https://stackoverflow.blog/2017/09/06/incredible-growth-python/
-
(2017)
The incredible growth of Python
-
-
Robinson, D.1
-
12
-
-
33750516992
-
On the theory of scales of measurement
-
Stevens S. S., (1946). On the theory of scales of measurement. Science, 103, 677–680.
-
(1946)
Science
, vol.103
, pp. 677-680
-
-
Stevens, S.S.1
-
14
-
-
85009962818
-
-
San Francisco, CA, Morgan Kaufmann
-
Witten I. H., Frank E., Hall M. A., Pal C. J., (2016). Data mining: Practical machine learning tools and techniques. San Francisco, CA: Morgan Kaufmann.
-
(2016)
Data mining: Practical machine learning tools and techniques
-
-
Witten, I.H.1
Frank, E.2
Hall, M.A.3
Pal, C.J.4
|