메뉴 건너뛰기




Volumn 12, Issue 1, 2019, Pages

Methanol fermentation increases the production of NAD(P)H-dependent chemicals in synthetic methylotrophic Escherichia coli

Author keywords

Cofactor regeneration; Methanol; NAD(P)H dependent chemicals; Synthetic methylotrophic E. coli

Indexed keywords

AMINO ACIDS; BIOCHEMISTRY; BIOCONVERSION; BIOMOLECULES; BIOSYNTHESIS; CARBON; CHEMICAL CONTAMINATION; CHEMICALS; ESCHERICHIA COLI; GENE EXPRESSION; METABOLISM; METABOLITES; METHANOL; PHYSIOLOGY; PROTEINS; YEAST;

EID: 85061608106     PISSN: 17546834     EISSN: None     Source Type: Journal    
DOI: 10.1186/s13068-019-1356-4     Document Type: Article
Times cited : (30)

References (27)
  • 1
    • 84926020090 scopus 로고    scopus 로고
    • C1-carbon sources for chemical and fuel production by microbial gas fermentation
    • Dürre P, Eikmanns BJ. C1-carbon sources for chemical and fuel production by microbial gas fermentation. Curr Opin Biotechnol. 2015;35:63-72.
    • (2015) Curr Opin Biotechnol , vol.35 , pp. 63-72
    • Dürre, P.1    Eikmanns, B.J.2
  • 2
    • 85041476245 scopus 로고    scopus 로고
    • Advances in metabolic engineering in the microbial production of fuels and chemicals from C1 gas
    • 1:CAS:528:DC%2BC1cXhs12gtg%3D%3D
    • Humphreys CM, Minton NP. Advances in metabolic engineering in the microbial production of fuels and chemicals from C1 gas. Curr Opin Biotechnol. 2018;50:174-81.
    • (2018) Curr Opin Biotechnol , vol.50 , pp. 174-181
    • Humphreys, C.M.1    Minton, N.P.2
  • 3
    • 85044337495 scopus 로고    scopus 로고
    • Harnessing a methane-fueled, sediment-free mixed microbial community for utilization of distributed sources of natural gas
    • 1:CAS:528:DC%2BC1cXltlSrtbg%3D
    • Marlow JJ, Kumar A, Enalls BC, Reynard LM, Tuross N, Stephanopoulos G, et al. Harnessing a methane-fueled, sediment-free mixed microbial community for utilization of distributed sources of natural gas. Biotechnol Bioeng. 2018;115:1450-64.
    • (2018) Biotechnol Bioeng , vol.115 , pp. 1450-1464
    • Marlow, J.J.1    Kumar, A.2    Enalls, B.C.3    Reynard, L.M.4    Tuross, N.5    Stephanopoulos, G.6
  • 4
    • 85036471562 scopus 로고    scopus 로고
    • Engineering the bioconversion of methane and methanol to fuels and chemicals in native and synthetic methylotrophs
    • 1:CAS:528:DC%2BC2sXhvVOrsLvL
    • Bennett RK, Steinberg LM, Chen W, Papoutsakis ET. Engineering the bioconversion of methane and methanol to fuels and chemicals in native and synthetic methylotrophs. Curr Opin Biotechnol. 2018;50:81-93.
    • (2018) Curr Opin Biotechnol , vol.50 , pp. 81-93
    • Bennett, R.K.1    Steinberg, L.M.2    Chen, W.3    Papoutsakis, E.T.4
  • 5
    • 84924958721 scopus 로고    scopus 로고
    • Synthetic methylotrophy: Engineering the production of biofuels and chemicals based on the biology of aerobic methanol utilization
    • 1:CAS:528:DC%2BC2MXhslertL4%3D
    • Whitaker WB, Sandoval NR, Bennett RK, Fast AG, Papoutsakis ET. Synthetic methylotrophy: engineering the production of biofuels and chemicals based on the biology of aerobic methanol utilization. Curr Opin Biotechnol. 2015;33:165-75.
    • (2015) Curr Opin Biotechnol , vol.33 , pp. 165-175
    • Whitaker, W.B.1    Sandoval, N.R.2    Bennett, R.K.3    Fast, A.G.4    Papoutsakis, E.T.5
  • 6
    • 84909606329 scopus 로고    scopus 로고
    • Building carbon-carbon bonds using a biocatalytic methanol condensation cycle
    • 1:CAS:528:DC%2BC2cXhvVemsrnL
    • Bogorad IW, Chen CT, Theisen MK, Wu TY, Schlenz AR, Lam AT, et al. Building carbon-carbon bonds using a biocatalytic methanol condensation cycle. Proc Natl Acad Sci. 2014;111:15928-33.
    • (2014) Proc Natl Acad Sci , vol.111 , pp. 15928-15933
    • Bogorad, I.W.1    Chen, C.T.2    Theisen, M.K.3    Wu, T.Y.4    Schlenz, A.R.5    Lam, A.T.6
  • 8
    • 84925462820 scopus 로고    scopus 로고
    • Methylotrophy in the thermophilic Bacillus methanolicus, basic insights and application for commodity production from methanol
    • Müller JEN, Heggeset TMB, Wendisch VF, Vorholt JA, Brautaset T. Methylotrophy in the thermophilic Bacillus methanolicus, basic insights and application for commodity production from methanol. Appl Microbiol Biotechnol. 2014;99:535-51.
    • (2014) Appl Microbiol Biotechnol , vol.99 , pp. 535-551
    • Müller, J.E.N.1    Heggeset, T.M.B.2    Wendisch, V.F.3    Vorholt, J.A.4    Brautaset, T.5
  • 9
    • 84958850751 scopus 로고    scopus 로고
    • Bioconversion of methanol to value-added mevalonate by engineered Methylobacterium extorquens AM1 containing an optimized mevalonate pathway
    • 1:CAS:528:DC%2BC2MXhslKgtrzP
    • Zhu WL, Cui JY, Cui LY, Liang WF, Yang S, Zhang C, et al. Bioconversion of methanol to value-added mevalonate by engineered Methylobacterium extorquens AM1 containing an optimized mevalonate pathway. Appl Microbiol Biotechnol. 2016;100:2171-82.
    • (2016) Appl Microbiol Biotechnol , vol.100 , pp. 2171-2182
    • Zhu, W.L.1    Cui, J.Y.2    Cui, L.Y.3    Liang, W.F.4    Yang, S.5    Zhang, C.6
  • 10
    • 84947046218 scopus 로고    scopus 로고
    • Production of carbon-13-labeled cadaverine by engineered Corynebacterium glutamicum using carbon-13-labeled methanol as co-substrate
    • Leßmeier L, Pfeifenschneider J, Carnicer M, Heux S, Portais JC, Wendisch VF. Production of carbon-13-labeled cadaverine by engineered Corynebacterium glutamicum using carbon-13-labeled methanol as co-substrate. Appl Microbiol Biotechnol. 2015;99:10163-76.
    • (2015) Appl Microbiol Biotechnol , vol.99 , pp. 10163-10176
    • Leßmeier, L.1    Pfeifenschneider, J.2    Carnicer, M.3    Heux, S.4    Portais, J.C.5    Wendisch, V.F.6
  • 11
    • 84924706148 scopus 로고    scopus 로고
    • Metabolic engineering of Corynebacterium glutamicum for methanol metabolism
    • 1:CAS:528:DC%2BC2MXkt1entLw%3D
    • Witthoff S, Schmitz K, Niedenführ S, Nöh K, Noack S, Bott M, et al. Metabolic engineering of Corynebacterium glutamicum for methanol metabolism. Appl Environ Microbiol. 2015;81:2215-25.
    • (2015) Appl Environ Microbiol , vol.81 , pp. 2215-2225
    • Witthoff, S.1    Schmitz, K.2    Niedenführ, S.3    Nöh, K.4    Noack, S.5    Bott, M.6
  • 13
    • 84875117534 scopus 로고    scopus 로고
    • Methylotrophic Bacillus methanolicus encodes two chromosomal and one plasmid born NAD(+) dependent methanol dehydrogenase paralogs with different catalytic and biochemical properties
    • 1:CAS:528:DC%2BC3sXltFSkurw%3D
    • Krog A, Heggeset TMB, Müller JEN, Kupper CE, Schneider O, Vorholt JA, et al. Methylotrophic Bacillus methanolicus encodes two chromosomal and one plasmid born NAD(+) dependent methanol dehydrogenase paralogs with different catalytic and biochemical properties. PLoS ONE. 2013;8:e59188.
    • (2013) PLoS ONE , vol.8 , pp. e59188
    • Krog, A.1    Heggeset, T.M.B.2    Müller, J.E.N.3    Kupper, C.E.4    Schneider, O.5    Vorholt, J.A.6
  • 14
    • 80052455282 scopus 로고    scopus 로고
    • Yeast methylotrophy: Metabolism, gene regulation and peroxisome homeostasis
    • 10.1155/2011/101298 21754936 3132611
    • Yurimoto H, Oku M, Sakai Y. Yeast methylotrophy: metabolism, gene regulation and peroxisome homeostasis. Int J Microbiol. 2011. https://doi.org/10.1155/2011/101298.
    • (2011) Int J Microbiol
    • Yurimoto, H.1    Oku, M.2    Sakai, Y.3
  • 15
    • 84992321320 scopus 로고    scopus 로고
    • Engineering the biological conversion of methanol to specialty chemicals in Escherichia coli
    • 1:CAS:528:DC%2BC28XhvVGgt7rL
    • Whitaker WB, Jones JA, Bennett RK, Gonzalez JE, Vernacchio VR, Collins SM, et al. Engineering the biological conversion of methanol to specialty chemicals in Escherichia coli. Metab Eng. 2017;39:49-59.
    • (2017) Metab Eng , vol.39 , pp. 49-59
    • Whitaker, W.B.1    Jones, J.A.2    Bennett, R.K.3    Gonzalez, J.E.4    Vernacchio, V.R.5    Collins, S.M.6
  • 16
    • 85036654608 scopus 로고    scopus 로고
    • Expression of heterologous non-oxidative pentose phosphate pathway from Bacillus methanolicus and phosphoglucose isomerase deletion improves methanol assimilation and metabolite production by a synthetic Escherichia coli methylotroph
    • 1:CAS:528:DC%2BC2sXhvFemtbjK
    • Bennett RK, Gonzalez JE, Whitaker WB, Antoniewicz MR, Papoutsakis ET. Expression of heterologous non-oxidative pentose phosphate pathway from Bacillus methanolicus and phosphoglucose isomerase deletion improves methanol assimilation and metabolite production by a synthetic Escherichia coli methylotroph. Metab Eng. 2018;45:75-85.
    • (2018) Metab Eng , vol.45 , pp. 75-85
    • Bennett, R.K.1    Gonzalez, J.E.2    Whitaker, W.B.3    Antoniewicz, M.R.4    Papoutsakis, E.T.5
  • 17
    • 84957595673 scopus 로고    scopus 로고
    • Characterization and evolution of an activator-independent methanol dehydrogenase from Cupriavidus necator N-1
    • 1:CAS:528:DC%2BC28Xit1Oht7g%3D
    • Wu TY, Chen CT, Liu JTJ, Bogorad IW, Damoiseaux R, Liao JC. Characterization and evolution of an activator-independent methanol dehydrogenase from Cupriavidus necator N-1. Appl Microbiol Biotechnol. 2016;100:4969-83.
    • (2016) Appl Microbiol Biotechnol , vol.100 , pp. 4969-4983
    • Wu, T.Y.1    Chen, C.T.2    Liu, J.T.J.3    Bogorad, I.W.4    Damoiseaux, R.5    Liao, J.C.6
  • 18
    • 0037144480 scopus 로고    scopus 로고
    • Molecular, biochemical, and functional characterization of a Nudix hydrolase protein that stimulates the activity of a nicotinoprotein alcohol dehydrogenase
    • 1:CAS:528:DC%2BD38Xnt1WhsLs%3D
    • Kloosterman H, Vrijbloed JW, Dijkhuizen L. Molecular, biochemical, and functional characterization of a Nudix hydrolase protein that stimulates the activity of a nicotinoprotein alcohol dehydrogenase. J Biol Chem. 2002;277:34785-92.
    • (2002) J Biol Chem , vol.277 , pp. 34785-34792
    • Kloosterman, H.1    Vrijbloed, J.W.2    Dijkhuizen, L.3
  • 19
    • 84903743153 scopus 로고    scopus 로고
    • A de novo NADPH generation pathway for improving lysine production of Corynebacterium glutamicum by rational design of the coenzyme specificity of glyceraldehyde 3-phosphate dehydrogenase
    • 1:CAS:528:DC%2BC2cXht1OrurzL
    • Bommareddy RR, Chen Z, Rappert S, Zeng AP. A de novo NADPH generation pathway for improving lysine production of Corynebacterium glutamicum by rational design of the coenzyme specificity of glyceraldehyde 3-phosphate dehydrogenase. Metab Eng. 2014;25:30-7.
    • (2014) Metab Eng , vol.25 , pp. 30-37
    • Bommareddy, R.R.1    Chen, Z.2    Rappert, S.3    Zeng, A.P.4
  • 20
    • 84977668993 scopus 로고    scopus 로고
    • Modification of aspartokinase III and dihydrodipicolinate synthetase increases the production of l-lysine in Escherichia coli
    • 1:CAS:528:DC%2BC28XhtFemsrjL
    • Xu J, Han M, Ren X, Zhang W. Modification of aspartokinase III and dihydrodipicolinate synthetase increases the production of l-lysine in Escherichia coli. Biochem Eng J. 2016;114:79-86.
    • (2016) Biochem Eng J , vol.114 , pp. 79-86
    • Xu, J.1    Han, M.2    Ren, X.3    Zhang, W.4
  • 21
    • 85016137765 scopus 로고    scopus 로고
    • Expanding metabolic pathway for de novo biosynthesis of the chiral pharmaceutical intermediate l-pipecolic acid in Escherichia coli
    • Ying H, Tao S, Wang J, Ma W, Chen K, Wang X, et al. Expanding metabolic pathway for de novo biosynthesis of the chiral pharmaceutical intermediate l-pipecolic acid in Escherichia coli. Microb Cell Fact. 2017;16:52.
    • (2017) Microb Cell Fact , vol.16 , pp. 52
    • Ying, H.1    Tao, S.2    Wang, J.3    Ma, W.4    Chen, K.5    Wang, X.6
  • 22
    • 84874378034 scopus 로고    scopus 로고
    • Effects of NADH kinase on NADPH-dependent biotransformation processes in Escherichia coli
    • 1:CAS:528:DC%2BC3sXhvFGhtbw%3D
    • Lee WH, Kim JW, Park EH, Han NS, Kim MD, Seo JH. Effects of NADH kinase on NADPH-dependent biotransformation processes in Escherichia coli. Appl Microbiol Biotechnol. 2013;97:1561-9.
    • (2013) Appl Microbiol Biotechnol , vol.97 , pp. 1561-1569
    • Lee, W.H.1    Kim, J.W.2    Park, E.H.3    Han, N.S.4    Kim, M.D.5    Seo, J.H.6
  • 23
    • 85048767853 scopus 로고    scopus 로고
    • Improving formaldehyde consumption drives methanol assimilation in engineered E. Coli
    • Woolston BM, King JR, Reiter M, Van Hove B, Stephanopoulos G. Improving formaldehyde consumption drives methanol assimilation in engineered E. coli. Nat Commun. 2018;9:2387.
    • (2018) Nat Commun , vol.9 , pp. 2387
    • Woolston, B.M.1    King, J.R.2    Reiter, M.3    Van Hove, B.4    Stephanopoulos, G.5
  • 24
    • 85036624330 scopus 로고    scopus 로고
    • Methanol assimilation in Escherichia coli is improved by co-utilization of threonine and deletion of leucine-responsive regulatory protein
    • 1:CAS:528:DC%2BC2sXhvFemtbjJ
    • Gonzalez JE, Bennett RK, Papoutsakis ET, Antoniewicz MR. Methanol assimilation in Escherichia coli is improved by co-utilization of threonine and deletion of leucine-responsive regulatory protein. Metab Eng. 2018;45:67-74.
    • (2018) Metab Eng , vol.45 , pp. 67-74
    • Gonzalez, J.E.1    Bennett, R.K.2    Papoutsakis, E.T.3    Antoniewicz, M.R.4
  • 25
    • 84994494330 scopus 로고    scopus 로고
    • Scaffoldless engineered enzyme assembly for enhanced methanol utilization
    • 1:CAS:528:DC%2BC28XhslalsLrF
    • Price JV, Chen L, Whitaker WB, Papoutsakis E, Chen W. Scaffoldless engineered enzyme assembly for enhanced methanol utilization. Proc Natl Acad Sci USA. 2016;113:12691-6.
    • (2016) Proc Natl Acad Sci USA , vol.113 , pp. 12691-12696
    • Price, J.V.1    Chen, L.2    Whitaker, W.B.3    Papoutsakis, E.4    Chen, W.5
  • 26
    • 84944938061 scopus 로고    scopus 로고
    • Engineering a pyridoxal 5′-phosphate supply for cadaverine production by using Escherichia coli whole-cell biocatalysis
    • 1:CAS:528:DC%2BC2MXhslSmtrjF
    • Ma W, Cao W, Zhang B, Chen K, Liu Q, Li Y, et al. Engineering a pyridoxal 5′-phosphate supply for cadaverine production by using Escherichia coli whole-cell biocatalysis. Sci Rep. 2015;5:15630.
    • (2015) Sci Rep , vol.5 , pp. 15630
    • Ma, W.1    Cao, W.2    Zhang, B.3    Chen, K.4    Liu, Q.5    Li, Y.6
  • 27
    • 77049138167 scopus 로고
    • The colorimetric estimation of formaldehyde by means of the Hantzsch reaction
    • 1:CAS:528:DyaG2cXjtVaq
    • Nash T. The colorimetric estimation of formaldehyde by means of the Hantzsch reaction. Biochem J. 1953;55:416-21.
    • (1953) Biochem J , vol.55 , pp. 416-421
    • Nash, T.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.