메뉴 건너뛰기




Volumn 1, Issue , 2018, Pages 269-278

Constraint-based causal discovery for non-linear structural causal models with cycles and latent confounders

Author keywords

[No Author keywords available]

Indexed keywords

ARTIFICIAL INTELLIGENCE; FUNCTIONS; SEPARATION; STOCHASTIC SYSTEMS;

EID: 85059373905     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (46)

References (34)
  • 4
    • 84896062859 scopus 로고    scopus 로고
    • Bayesian probabilities for constraint-based causal discovery
    • T. Claassen and T. Heskes. Bayesian probabilities for constraint-based causal discovery. In IJCAI-13, pages 2992-2996, 2013.
    • (2013) IJCAI-13 , pp. 2992-2996
    • Claassen, T.1    Heskes, T.2
  • 5
    • 84888174793 scopus 로고    scopus 로고
    • Learning sparse causal models is not NP-hard
    • T. Claassen, J.M. Mooij, and T. Heskes. Learning Sparse Causal Models is not NP-hard. In UAI-13, pages 172-181, 2013.
    • (2013) UAI-13 , pp. 172-181
    • Claassen, T.1    Mooij, J.M.2    Heskes, T.3
  • 6
    • 34249832377 scopus 로고
    • A Bayesian method for the induction of probabilistic networks from data
    • G. F. Cooper and E. Herskovits. A Bayesian method for the induction of probabilistic networks from data. Machine Learning, 9: 309-347, 1992.
    • (1992) Machine Learning , vol.9 , pp. 309-347
    • Cooper, G.F.1    Herskovits, E.2
  • 7
    • 70450278796 scopus 로고    scopus 로고
    • Computing maximum likelihood estimates in recursive linear models with correlated errors
    • M. Drton, M. Eichler, and T. Richardson. Computing maximum likelihood estimates in recursive linear models with correlated errors. Journal of Machine Learning Research, 10: 2329-2348, 2009.
    • (2009) Journal of Machine Learning Research , vol.10 , pp. 2329-2348
    • Drton, M.1    Eichler, M.2    Richardson, T.3
  • 8
    • 80053152166 scopus 로고    scopus 로고
    • Maximum likelihood fitting of acyclic directed mixed graphs to binary data
    • R. Evans and T. Richardson. Maximum likelihood fitting of acyclic directed mixed graphs to binary data. In UAI-10, 2010.
    • (2010) UAI-10
    • Evans, R.1    Richardson, T.2
  • 9
    • 84987892086 scopus 로고    scopus 로고
    • Graphs for margins of Bayesian networks
    • R.J. Evans. Graphs for margins of Bayesian networks. Scand. J. Stat., 43(3): 625-648, 2016.
    • (2016) Scand. J. Stat. , vol.43 , Issue.3 , pp. 625-648
    • Evans, R.J.1
  • 11
    • 84987994699 scopus 로고    scopus 로고
    • Markovian acyclic directed mixed graphs for discrete data
    • 08
    • R.J. Evans and T.S. Richardson. Markovian acyclic directed mixed graphs for discrete data. Ann. Statist., 42(4): 1452-1482, 08 2014.
    • (2014) Ann. Statist. , vol.42 , Issue.4 , pp. 1452-1482
    • Evans, R.J.1    Richardson, T.S.2
  • 14
    • 0000034390 scopus 로고
    • Learning Gaussian networks
    • D. Geiger and D. Heckerman. Learning Gaussian networks. In UAI-94, pages 235-243, 1994.
    • (1994) UAI-94 , pp. 235-243
    • Geiger, D.1    Heckerman, D.2
  • 17
    • 0012315692 scopus 로고    scopus 로고
    • A Bayesian approach to causal discovery
    • C. Glymour and G. F. Cooper, editors MIT Press
    • D. Heckerman, C. Meek, and G. Cooper. A Bayesian approach to causal discovery. In C. Glymour and G. F. Cooper, editors, Computation, Causation, and Discovery, pages 141-166. MIT Press, 1999.
    • (1999) Computation, Causation, and Discovery , pp. 141-166
    • Heckerman, D.1    Meek, C.2    Cooper, G.3
  • 19
    • 84923292776 scopus 로고    scopus 로고
    • Constraint-based causal discovery: Conflict resolution with answer set programming
    • A. Hyttinen, F. Eberhardt, and M. Järvisalo. Constraint-based causal discovery: Conflict resolution with answer set programming. In UAI-14, pages 340-349, 2014.
    • (2014) UAI-14 , pp. 340-349
    • Hyttinen, A.1    Eberhardt, F.2    Järvisalo, M.3
  • 22
    • 0040086810 scopus 로고
    • Strong completeness and faithfulness in Bayesian networks
    • C. Meek. Strong completeness and faithfulness in Bayesian networks. In UAI-95, pages 411-418, 1995.
    • (1995) UAI-95 , pp. 411-418
    • Meek, C.1
  • 24
    • 84911533938 scopus 로고
    • Fusion, propagation and structuring in belief networks
    • Technical Report 850022 (R-42)
    • J. Pearl. Fusion, propagation and structuring in belief networks. Technical Report 3, UCLA Computer Science Department, 1986. Technical Report 850022 (R-42).
    • (1986) Technical Report 3, UCLA Computer Science Department
    • Pearl, J.1
  • 27
    • 0040630191 scopus 로고    scopus 로고
    • A discovery algorithm for directed cyclic graphs
    • T. Richardson. A discovery algorithm for directed cyclic graphs. In UAI-96, pages 454-461. 1996.
    • (1996) UAI-96 , pp. 454-461
    • Richardson, T.1
  • 28
    • 0038107398 scopus 로고    scopus 로고
    • Markov properties for acyclic directed mixed graphs
    • T. Richardson. Markov properties for acyclic directed mixed graphs. Scand. J. Stat., 30(1): 145-157, 2003.
    • (2003) Scand. J. Stat. , vol.30 , Issue.1 , pp. 145-157
    • Richardson, T.1
  • 29
    • 0012720970 scopus 로고    scopus 로고
    • Automated discovery of linear feedback models
    • C. Glymour and G. F. Cooper, editors MIT Press
    • T. Richardson and P. Spirtes. Automated discovery of linear feedback models. In C. Glymour and G. F. Cooper, editors, Computation, Causation, and Discovery, pages 253-304. MIT Press, 1999.
    • (1999) Computation, Causation, and Discovery , pp. 253-304
    • Richardson, T.1    Spirtes, P.2
  • 30
    • 84965107424 scopus 로고    scopus 로고
    • BACKSHIFT: Learning causal cyclic graphs from unknown shift interventions
    • D. Rothenhäusler, C. Heinze, J. Peters, and N. Meinshausen. BACKSHIFT: Learning causal cyclic graphs from unknown shift interventions. In NIPS-15, pages 1513-1521. 2015.
    • (2015) NIPS-15 , pp. 1513-1521
    • Rothenhäusler, D.1    Heinze, C.2    Peters, J.3    Meinshausen, N.4
  • 31
    • 0003263637 scopus 로고
    • Directed cyclic graphical representations of feedback models
    • P. Spirtes. Directed cyclic graphical representations of feedback models. In UAI-95, pages 491-499, 1995.
    • (1995) UAI-95 , pp. 491-499
    • Spirtes, P.1
  • 33
    • 0001779012 scopus 로고
    • Causal networks: Semantics and expressiveness
    • T.S. Verma and J. Pearl. Causal Networks: Semantics and Expressiveness. UAI-90, 4: 69-76, 1990.
    • (1990) UAI-90 , vol.4 , pp. 69-76
    • Verma, T.S.1    Pearl, J.2
  • 34
    • 52949097616 scopus 로고    scopus 로고
    • On the completeness of orientation rules for causal discovery in the presence of latent confounders and selection bias
    • J. Zhang. On the completeness of orientation rules for causal discovery in the presence of latent confounders and selection bias. Artificial Intelligence, 172(16-17): 1873-1896, 2008.
    • (2008) Artificial Intelligence , vol.172 , Issue.16-17 , pp. 1873-1896
    • Zhang, J.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.