-
1
-
-
85008339643
-
Mean field games models of segregation
-
Achdou, Y., Bardi, M., Cirant, M., Mean field games models of segregation. Math. Models Methods Appl. Sci. 27:1 (2017), 75–113.
-
(2017)
Math. Models Methods Appl. Sci.
, vol.27
, Issue.1
, pp. 75-113
-
-
Achdou, Y.1
Bardi, M.2
Cirant, M.3
-
2
-
-
85059082568
-
Uniqueness of solutions in mean field games with several populations and Neumann conditions
-
arXiv preprint
-
Bardi, M., Cirant, M., Uniqueness of solutions in mean field games with several populations and Neumann conditions. arXiv preprint https://arxiv.org/abs/1709.02158, 2017.
-
(2017)
-
-
Bardi, M.1
Cirant, M.2
-
3
-
-
85084110006
-
On non-uniqueness and uniqueness of solutions in finite-horizon mean field games
-
in press
-
Bardi, M., Fischer, M., On non-uniqueness and uniqueness of solutions in finite-horizon mean field games. ESAIM Control Optim. Calc. Var., 2018, 10.1051/cocv/2018026 in press.
-
(2018)
ESAIM Control Optim. Calc. Var.
-
-
Bardi, M.1
Fischer, M.2
-
4
-
-
85088964125
-
Mean Field Games and Mean Field Type Control Theory
-
Springer New York
-
Bensoussan, A., Frehse, J., Yam, P., Mean Field Games and Mean Field Type Control Theory. SpringerBriefs in Mathematics, 2013, Springer, New York.
-
(2013)
SpringerBriefs in Mathematics
-
-
Bensoussan, A.1
Frehse, J.2
Yam, P.3
-
5
-
-
85057994334
-
Mean field control and mean field game models with several populations
-
Bensoussan, A., Huang, T., Lauriére, M., Mean field control and mean field game models with several populations. Minimax Theory Appl. 3 (2018), 173–209.
-
(2018)
Minimax Theory Appl.
, vol.3
, pp. 173-209
-
-
Bensoussan, A.1
Huang, T.2
Lauriére, M.3
-
6
-
-
85037639084
-
Stable solutions in potential mean field game systems
-
Briani, A., Cardaliaguet, P., Stable solutions in potential mean field game systems. NoDEA Nonlinear Differential Equations Appl., 25(1), 2018, 1.
-
(2018)
NoDEA Nonlinear Differential Equations Appl.
, vol.25
, Issue.1
-
-
Briani, A.1
Cardaliaguet, P.2
-
7
-
-
85059333051
-
-
Notes on mean field games.
-
P. Cardaliaguet, Notes on mean field games.
-
-
-
Cardaliaguet, P.1
-
8
-
-
84865574440
-
Long time average of mean field games
-
Cardaliaguet, P., Lasry, J.-M., Lions, P.-L., Porretta, A., Long time average of mean field games. Netw. Heterog. Media 7:2 (2012), 279–301.
-
(2012)
Netw. Heterog. Media
, vol.7
, Issue.2
, pp. 279-301
-
-
Cardaliaguet, P.1
Lasry, J.-M.2
Lions, P.-L.3
Porretta, A.4
-
9
-
-
85052390709
-
A Segregation Problem in Multi-Population Mean Field Games
-
Springer International Publishing Cham
-
Cardaliaguet, P., Porretta, A., Tonon, D., A Segregation Problem in Multi-Population Mean Field Games. 2017, Springer International Publishing, Cham, 49–70.
-
(2017)
, pp. 49-70
-
-
Cardaliaguet, P.1
Porretta, A.2
Tonon, D.3
-
10
-
-
85057980819
-
Concentration of ground states in stationary mean-field games systems
-
Cesaroni, A., Cirant, M., Concentration of ground states in stationary mean-field games systems. Anal. PDE 12:3 (2019), 737–787.
-
(2019)
Anal. PDE
, vol.12
, Issue.3
, pp. 737-787
-
-
Cesaroni, A.1
Cirant, M.2
-
11
-
-
84926524427
-
Multi-population mean field games systems with Neumann boundary conditions
-
Cirant, M., Multi-population mean field games systems with Neumann boundary conditions. J. Math. Pures Appl. (9) 103:5 (2015), 1294–1315.
-
(2015)
J. Math. Pures Appl. (9)
, vol.103
, Issue.5
, pp. 1294-1315
-
-
Cirant, M.1
-
12
-
-
84979000025
-
Stationary focusing mean-field games
-
Cirant, M., Stationary focusing mean-field games. Comm. Partial Differential Equations 41:8 (2016), 1324–1346.
-
(2016)
Comm. Partial Differential Equations
, vol.41
, Issue.8
, pp. 1324-1346
-
-
Cirant, M.1
-
13
-
-
85064331886
-
Short-time existence for a backward–forward parabolic system arising from mean-field games
-
Cirant, M., Gianni, R., Mannucci, P., Short-time existence for a backward–forward parabolic system arising from mean-field games. arXiv:1806.08138, 2018.
-
(2018)
-
-
Cirant, M.1
Gianni, R.2
Mannucci, P.3
-
14
-
-
85057946366
-
The variational structure and time-periodic solutions for mean-field games systems
-
Cirant, M., Nurbekyan, L., The variational structure and time-periodic solutions for mean-field games systems. Minimax Theory Appl. 3 (2018), 227–260.
-
(2018)
Minimax Theory Appl.
, vol.3
, pp. 227-260
-
-
Cirant, M.1
Nurbekyan, L.2
-
15
-
-
85064014763
-
Time-dependent focusing mean-field games: the sub-critical case
-
in press
-
Cirant, M., Tonon, D., Time-dependent focusing mean-field games: the sub-critical case. arXiv:1704.04014 J. Dynam. Differential Equations, 2018, 10.1007/s10884-018-9667-x in press.
-
(2018)
J. Dynam. Differential Equations
-
-
Cirant, M.1
Tonon, D.2
-
16
-
-
85019614845
-
Bifurcation and segregation in quadratic two-populations mean field games systems
-
Cirant, M., Verzini, G., Bifurcation and segregation in quadratic two-populations mean field games systems. ESAIM Control Optim. Calc. Var. 23:3 (2017), 1145–1177.
-
(2017)
ESAIM Control Optim. Calc. Var.
, vol.23
, Issue.3
, pp. 1145-1177
-
-
Cirant, M.1
Verzini, G.2
-
17
-
-
84887513526
-
The derivation of ergodic mean field game equations for several populations of players
-
Feleqi, E., The derivation of ergodic mean field game equations for several populations of players. Dyn. Games Appl. 3:4 (2013), 523–536.
-
(2013)
Dyn. Games Appl.
, vol.3
, Issue.4
, pp. 523-536
-
-
Feleqi, E.1
-
18
-
-
85053658036
-
One-dimensional, forward–forward mean-field games with congestion
-
Gomes, D., Sedjro, M., One-dimensional, forward–forward mean-field games with congestion. Discrete Contin. Dyn. Syst. Ser. S 11:5 (2018), 901–914.
-
(2018)
Discrete Contin. Dyn. Syst. Ser. S
, vol.11
, Issue.5
, pp. 901-914
-
-
Gomes, D.1
Sedjro, M.2
-
19
-
-
85045415487
-
One-dimensional stationary mean-field games with local coupling
-
Gomes, D.A., Nurbekyan, L., Prazeres, M., One-dimensional stationary mean-field games with local coupling. Dyn. Games Appl. 8:2 (2018), 315–351.
-
(2018)
Dyn. Games Appl.
, vol.8
, Issue.2
, pp. 315-351
-
-
Gomes, D.A.1
Nurbekyan, L.2
Prazeres, M.3
-
20
-
-
84978437345
-
Weakly coupled mean-field game systems
-
Gomes, D.A., Patrizi, S., Weakly coupled mean-field game systems. Nonlinear Anal. 144 (2016), 110–138.
-
(2016)
Nonlinear Anal.
, vol.144
, pp. 110-138
-
-
Gomes, D.A.1
Patrizi, S.2
-
21
-
-
85101168605
-
Regularity Theory for Mean-Field Game Systems
-
Springer
-
Gomes, D.A., Pimentel, E.A., Voskanyan, V., Regularity Theory for Mean-Field Game Systems. SpringerBriefs in Mathematics, 2016, Springer.
-
(2016)
SpringerBriefs in Mathematics
-
-
Gomes, D.A.1
Pimentel, E.A.2
Voskanyan, V.3
-
22
-
-
39549087376
-
Large population stochastic dynamic games: closed-loop McKean–Vlasov systems and the Nash certainty equivalence principle
-
Huang, M., Malhamé R.P., Caines, P.E., Large population stochastic dynamic games: closed-loop McKean–Vlasov systems and the Nash certainty equivalence principle. Commun. Inf. Syst. 6:3 (2006), 221–251.
-
(2006)
Commun. Inf. Syst.
, vol.6
, Issue.3
, pp. 221-251
-
-
Huang, M.1
Malhamé, R.P.2
Caines, P.E.3
-
23
-
-
14244253143
-
Bifurcation Theory
-
Springer-Verlag New York An introduction with applications to PDEs
-
Kielhöfer, H., Bifurcation Theory. Applied Mathematical Sciences, vol. 156, 2004, Springer-Verlag, New York An introduction with applications to PDEs.
-
(2004)
Applied Mathematical Sciences
, vol.156
-
-
Kielhöfer, H.1
-
24
-
-
80455173864
-
On a mean field game approach modeling congestion and aversion in pedestrian crowds
-
Lachapelle, A., Wolfram, M.-T., On a mean field game approach modeling congestion and aversion in pedestrian crowds. Transp. Res., Part B, Methodol. 45:10 (2011), 1572–1589.
-
(2011)
Transp. Res., Part B, Methodol.
, vol.45
, Issue.10
, pp. 1572-1589
-
-
Lachapelle, A.1
Wolfram, M.-T.2
-
25
-
-
33751077273
-
Jeux à champ moyen. II. Horizon fini et contrôle optimal
-
Lasry, J.-M., Lions, P.-L., Jeux à champ moyen. II. Horizon fini et contrôle optimal. C. R. Math. Acad. Sci. Paris 343:10 (2006), 679–684.
-
(2006)
C. R. Math. Acad. Sci. Paris
, vol.343
, Issue.10
, pp. 679-684
-
-
Lasry, J.-M.1
Lions, P.-L.2
-
26
-
-
34047127341
-
Mean field games
-
Lasry, J.-M., Lions, P.-L., Mean field games. Jpn. J. Math. 2:1 (2007), 229–260.
-
(2007)
Jpn. J. Math.
, vol.2
, Issue.1
, pp. 229-260
-
-
Lasry, J.-M.1
Lions, P.-L.2
-
27
-
-
0003492651
-
Second Order Parabolic Differential Equations
-
World Scientific Publishing Co., Inc. River Edge, NJ
-
Lieberman, G.M., Second Order Parabolic Differential Equations. 1996, World Scientific Publishing Co., Inc., River Edge, NJ.
-
(1996)
-
-
Lieberman, G.M.1
-
28
-
-
84865537156
-
In cours au collége de france
-
Lions, P.-L., In cours au collége de france. www.college-de-france.fr.
-
-
-
Lions, P.-L.1
-
29
-
-
84860667028
-
Bifurcation analysis of a heterogeneous mean-field oscillator game model
-
Yin, H., Mehta, P.G., Meyn, S.P., Shanbhag, U.V., Bifurcation analysis of a heterogeneous mean-field oscillator game model. Proceedings of the 50th IEEE Conference on Decision and Control and European Control Conference, CDC-ECC 2011, 2011, 3895–3900.
-
(2011)
Proceedings of the 50th IEEE Conference on Decision and Control and European Control Conference, CDC-ECC 2011
, pp. 3895-3900
-
-
Yin, H.1
Mehta, P.G.2
Meyn, S.P.3
Shanbhag, U.V.4
|