-
1
-
-
84883178689
-
Finite difference methods for mean field games
-
Springer, Berlin, Heidelberg, Hamilton-Jacobi Equations: Approximations, Numerical Analysis and Applications
-
Achdou Y. Finite difference methods for mean field games. Lecture Notes in Mathematics 2013, 1-47. Springer, Berlin, Heidelberg.
-
(2013)
Lecture Notes in Mathematics
, pp. 1-47
-
-
Achdou, Y.1
-
4
-
-
0033247049
-
On the strong maximum principle for fully nonlinear degenerate elliptic equations
-
Bardi M., Da Lio F. On the strong maximum principle for fully nonlinear degenerate elliptic equations. Arch. Math. (Basel) 1999, 73(4):276-285.
-
(1999)
Arch. Math. (Basel)
, vol.73
, Issue.4
, pp. 276-285
-
-
Bardi, M.1
Da Lio, F.2
-
5
-
-
24944480311
-
On the boundary ergodic problem for fully nonlinear equations in bounded domains with general nonlinear Neumann boundary conditions
-
Barles G., Da Lio F. On the boundary ergodic problem for fully nonlinear equations in bounded domains with general nonlinear Neumann boundary conditions. Ann. Inst. Henri Poincaré, Anal. Non Linéaire 2005, 22(5):521-541.
-
(2005)
Ann. Inst. Henri Poincaré, Anal. Non Linéaire
, vol.22
, Issue.5
, pp. 521-541
-
-
Barles, G.1
Da Lio, F.2
-
9
-
-
84865574440
-
Long time average of mean field games
-
Cardaliaguet P., Lasry J.-M., Lions P.-L., Porretta A. Long time average of mean field games. Netw. Heterog. Media 2012, 7(2):279-301.
-
(2012)
Netw. Heterog. Media
, vol.7
, Issue.2
, pp. 279-301
-
-
Cardaliaguet, P.1
Lasry, J.-M.2
Lions, P.-L.3
Porretta, A.4
-
10
-
-
84967708673
-
User's guide to viscosity solutions of second order partial differential equations
-
Crandall M.G., Ishii H., Lions P.-L. User's guide to viscosity solutions of second order partial differential equations. Bull., New Ser., Am. Math. Soc. 1992, 27(1):1-67.
-
(1992)
Bull., New Ser., Am. Math. Soc.
, vol.27
, Issue.1
, pp. 1-67
-
-
Crandall, M.G.1
Ishii, H.2
Lions, P.-L.3
-
11
-
-
84887513526
-
The derivation of ergodic mean field game equations for several populations of players
-
Feleqi E. The derivation of ergodic mean field game equations for several populations of players. Dyn. Games Appl. 2013, 3(4):523-536.
-
(2013)
Dyn. Games Appl.
, vol.3
, Issue.4
, pp. 523-536
-
-
Feleqi, E.1
-
12
-
-
0041625080
-
Elliptic Partial Differential Equations of Second Order
-
Springer-Verlag
-
Gilbarg D., Trudinger N.S. Elliptic Partial Differential Equations of Second Order. Classics in Mathematics 2001, Springer-Verlag. 3rd ed.
-
(2001)
Classics in Mathematics
-
-
Gilbarg, D.1
Trudinger, N.S.2
-
13
-
-
84892860445
-
On the existence of classical solutions for stationary extended mean field games
-
Gomes D.A., Patrizi S., Voskanyan V. On the existence of classical solutions for stationary extended mean field games. Nonlinear Anal. 2014, 99:49-79.
-
(2014)
Nonlinear Anal.
, vol.99
, pp. 49-79
-
-
Gomes, D.A.1
Patrizi, S.2
Voskanyan, V.3
-
15
-
-
79952140932
-
Large-population LQG games involving a major player: the Nash certainty equivalence principle
-
Huang M. Large-population LQG games involving a major player: the Nash certainty equivalence principle. SIAM J. Control Optim. 2009/10, 48(5):3318-3353.
-
(2009)
SIAM J. Control Optim.
, vol.48
, Issue.5
, pp. 3318-3353
-
-
Huang, M.1
-
16
-
-
39549087376
-
Large population stochastic dynamic games: closed-loop McKean-Vlasov systems and the Nash certainty equivalence principle
-
Huang M., Malhamé R.P., Caines P.E. Large population stochastic dynamic games: closed-loop McKean-Vlasov systems and the Nash certainty equivalence principle. Commun. Inf. Syst. 2006, 6(3):221-251.
-
(2006)
Commun. Inf. Syst.
, vol.6
, Issue.3
, pp. 221-251
-
-
Huang, M.1
Malhamé, R.P.2
Caines, P.E.3
-
17
-
-
80455173864
-
On a mean field game approach modeling congestion and aversion in pedestrian crowds
-
Lachapelle A., Wolfram M.-T. On a mean field game approach modeling congestion and aversion in pedestrian crowds. Transp. Res., Part B, Methodol. 2011, 45(10):1572-1589.
-
(2011)
Transp. Res., Part B, Methodol.
, vol.45
, Issue.10
, pp. 1572-1589
-
-
Lachapelle, A.1
Wolfram, M.-T.2
-
18
-
-
33750627999
-
Jeux à champ moyen. I. Le cas stationnaire
-
Lasry J.-M., Lions P.-L. Jeux à champ moyen. I. Le cas stationnaire. C. R. Math. Acad. Sci. Paris 2006, 343(9):619-625.
-
(2006)
C. R. Math. Acad. Sci. Paris
, vol.343
, Issue.9
, pp. 619-625
-
-
Lasry, J.-M.1
Lions, P.-L.2
-
19
-
-
33751077273
-
Jeux à champ moyen. II. Horizon fini et contrÔle optimal
-
Lasry J.-M., Lions P.-L. Jeux à champ moyen. II. Horizon fini et contrÔle optimal. C. R. Math. Acad. Sci. Paris 2006, 343(10):679-684.
-
(2006)
C. R. Math. Acad. Sci. Paris
, vol.343
, Issue.10
, pp. 679-684
-
-
Lasry, J.-M.1
Lions, P.-L.2
-
22
-
-
51249172276
-
Quelques remarques sur les problèmes elliptiques quasilinéaires du second ordre
-
Lions P.-L. Quelques remarques sur les problèmes elliptiques quasilinéaires du second ordre. J. Anal. Math. 1985, 45:234-254.
-
(1985)
J. Anal. Math.
, vol.45
, pp. 234-254
-
-
Lions, P.-L.1
-
23
-
-
0000973918
-
On elliptic partial differential equations
-
Nirenberg L. On elliptic partial differential equations. Ann. Sc. Norm. Super. Pisa (3) 1959, 13:115-162.
-
(1959)
Ann. Sc. Norm. Super. Pisa (3)
, vol.13
, pp. 115-162
-
-
Nirenberg, L.1
-
24
-
-
84888865707
-
ε-Nash mean field game theory for nonlinear stochastic dynamical systems with major and minor agents
-
Nourian M., Caines P.E. ε-Nash mean field game theory for nonlinear stochastic dynamical systems with major and minor agents. SIAM J. Control Optim. 2013, 51(4):3302-3331.
-
(2013)
SIAM J. Control Optim.
, vol.51
, Issue.4
, pp. 3302-3331
-
-
Nourian, M.1
Caines, P.E.2
-
25
-
-
34047155861
-
p estimates and regularity. I
-
p estimates and regularity. I. Am. J. Math. 1963, 85:1-13.
-
(1963)
Am. J. Math.
, vol.85
, pp. 1-13
-
-
Schechter, M.1
|