-
1
-
-
0000049356
-
p approach to the Dirichlet problem. Part I: Regularity theorems
-
p approach to the Dirichlet problem. Part I:Regularity theorems. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 13:405–448.
-
(1959)
Ann. Sc. Norm. Super. Pisa Cl. Sci. (5)
, vol.13
, pp. 405-448
-
-
Agmon, S.1
-
2
-
-
84911092308
-
Linear-quadratic N-person and mean-field games with ergodic cost
-
M.Bardi, F.S.Priuli, (2014). Linear-quadratic N-person and mean-field games with ergodic cost. SIAM J. Control Optim. 52:3022–3052.
-
(2014)
SIAM J. Control Optim
, vol.52
, pp. 3022-3052
-
-
Bardi, M.1
Priuli, F.S.2
-
4
-
-
0020591567
-
Nonlinear scalar field equations. I. Existence of a ground state
-
H.Berestycki, P.-L.Lions, (1983). Nonlinear scalar field equations. I. Existence of a ground state. Arch. Rational Mech. Anal. 82:313–345.
-
(1983)
Arch. Rational Mech. Anal
, vol.82
, pp. 313-345
-
-
Berestycki, H.1
Lions, P.-L.2
-
5
-
-
84964658663
-
Strongly coupled elliptic equations related to mean-field games systems
-
L.Boccardo, L.Orsina, A.Porretta, (2016). Strongly coupled elliptic equations related to mean-field games systems. J. Diff. Equs. 261:1796–1834.
-
(2016)
J. Diff. Equs
, vol.261
, pp. 1796-1834
-
-
Boccardo, L.1
Orsina, L.2
Porretta, A.3
-
6
-
-
79960992838
-
On uniqueness problems related to elliptic equations for measures
-
V.I.Bogachev, M.Röckner, S.V.Shaposhnikov, (2011). On uniqueness problems related to elliptic equations for measures. J. Math. Sci. 176:759–773.
-
(2011)
J. Math. Sci
, vol.176
, pp. 759-773
-
-
Bogachev, V.I.1
Röckner, M.2
Shaposhnikov, S.V.3
-
7
-
-
84980588141
-
-
Notes on mean field games
-
P.Cardaliaguet, Notes on mean field games.
-
-
-
Cardaliaguet, P.1
-
9
-
-
84865574440
-
Long time average of mean field games
-
P.Cardaliaguet, J.-M.Lasry, P.-L.Lions, A.Porretta, (2012). Long time average of mean field games. Netw. Heterog. Media 7:279–301.
-
(2012)
Netw. Heterog. Media
, vol.7
, pp. 279-301
-
-
Cardaliaguet, P.1
Lasry, J.-M.2
Lions, P.-L.3
Porretta, A.4
-
10
-
-
84890470397
-
Long time average of mean field games with a nonlocal coupling
-
P.Cardaliaguet, J.-M.Lasry, P.-L.Lions, A.Porretta, (2013). Long time average of mean field games with a nonlocal coupling. SIAM J. Control Optim. 51:3558–3591.
-
(2013)
SIAM J. Control Optim
, vol.51
, pp. 3558-3591
-
-
Cardaliaguet, P.1
Lasry, J.-M.2
Lions, P.-L.3
Porretta, A.4
-
11
-
-
10844227674
-
-
Courant Lecture Notes in Mathematics, Vol. 10., New York: New York University, Courant Institute of Mathematical Sciences, Providence, RI: American Mathematical Society
-
T.Cazenave, (2003). Semilinear Schrödinger Equations. Courant Lecture Notes in Mathematics, Vol. 10. New York:New York University, Courant Institute of Mathematical Sciences, Providence, RI:American Mathematical Society.
-
(2003)
Semilinear Schrödinger Equations
-
-
Cazenave, T.1
-
12
-
-
0000090159
-
Orbital stability of standing waves for some nonlinear Schrödinger equations
-
T.Cazenave, P.-L.Lions, (1982). Orbital stability of standing waves for some nonlinear Schrödinger equations. Commun. Math. Phys. 85:549–561.
-
(1982)
Commun. Math. Phys
, vol.85
, pp. 549-561
-
-
Cazenave, T.1
Lions, P.-L.2
-
14
-
-
84938751802
-
A generalization of the Hopf-Cole transformation for stationary Mean-Field Games systems
-
M.Cirant, (2015). A generalization of the Hopf-Cole transformation for stationary Mean-Field Games systems. C. R. Math. Acad. Sci. Paris 353:807–811.
-
(2015)
C. R. Math. Acad. Sci. Paris
, vol.353
, pp. 807-811
-
-
Cirant, M.1
-
15
-
-
84926524427
-
Multi-population mean field games systems with Neumann boundary conditions
-
M.Cirant, (2015). Multi-population mean field games systems with Neumann boundary conditions. J. Math. Pures Appl. (9) 103:1294–1315.
-
(2015)
J. Math. Pures Appl. (9)
, vol.103
, pp. 1294-1315
-
-
Cirant, M.1
-
16
-
-
84980533277
-
-
Existence of weak solutions to stationary Mean-Field Games through variational inequalities. Preprint
-
D.Gomes, R.Ferreira, Existence of weak solutions to stationary Mean-Field Games through variational inequalities. Preprint.
-
-
-
Gomes, D.1
Ferreira, R.2
-
17
-
-
84980537587
-
-
Explicit solutions of one-dimensional, first-order, stationary Mean-Field Games with congestion. Preprint
-
D.Gomes, L.Nurbekyan, M.Prazeres, Explicit solutions of one-dimensional, first-order, stationary Mean-Field Games with congestion. Preprint.
-
-
-
Gomes, D.1
Nurbekyan, L.2
Prazeres, M.3
-
18
-
-
84980519648
-
-
Regularity theory for Mean-Field Games systems. To appear
-
D.Gomes, E.Pimentel, V.Voskanyan, Regularity theory for Mean-Field Games systems. To appear.
-
-
-
Gomes, D.1
Pimentel, E.2
Voskanyan, V.3
-
19
-
-
84980522222
-
-
Time dependent mean-field games with logarithmic nonlinearities. To appear in SIAM J. Math. Anal
-
D.Gomes, E.Pimentel, Time dependent mean-field games with logarithmic nonlinearities. To appear in SIAM J. Math. Anal.
-
-
-
Gomes, D.1
Pimentel, E.2
-
20
-
-
84899464039
-
Mean field games models—A brief survey
-
D.Gomes, J.Saúde, (2014). Mean field games models—A brief survey. Dyn. Games Appl. 4(2):110–154.
-
(2014)
Dyn. Games Appl
, vol.4
, Issue.2
, pp. 110-154
-
-
Gomes, D.1
Saúde, J.2
-
21
-
-
84892860445
-
On the existence of classical solutions for stationary extended mean field games
-
D.A.Gomes, S.Patrizi, V.Voskanyan, (2014). On the existence of classical solutions for stationary extended mean field games. Nonlinear Anal. 99:49–79.
-
(2014)
Nonlinear Anal
, vol.99
, pp. 49-79
-
-
Gomes, D.A.1
Patrizi, S.2
Voskanyan, V.3
-
23
-
-
68849084877
-
A reference case for mean field games models
-
O.Guéant, (2009). A reference case for mean field games models. J. Math. Pures Appl. 92:276–294.
-
(2009)
J. Math. Pures Appl
, vol.92
, pp. 276-294
-
-
Guéant, O.1
-
24
-
-
84864332611
-
-
Mean field games equations with quadratic Hamiltonian: A specific approach. Math. Models Methods Appl. Sci. 22:1250022, 37
-
O.Guéant, (2012). Mean field games equations with quadratic Hamiltonian:A specific approach. Math. Models Methods Appl. Sci. 22:1250022, 37.
-
(2012)
-
-
Guéant, O.1
-
25
-
-
34648831837
-
Large-population cost-coupled LQG problems with nonuniform agents: Individual-mass behavior and decentralized ϵ-Nash equilibria
-
M.Huang, P.E.Caines, R.P.Malhame, (2007). Large-population cost-coupled LQG problems with nonuniform agents:Individual-mass behavior and decentralized ϵ-Nash equilibria. IEEE Trans. Automat. Control 52:1560–1571.
-
(2007)
IEEE Trans. Automat. Control
, vol.52
, pp. 1560-1571
-
-
Huang, M.1
Caines, P.E.2
Malhame, R.P.3
-
26
-
-
39549087376
-
Large population stochastic dynamic games: Closed-loop McKean-Vlasov systems and the Nash certainty equivalence principle
-
M.Huang, R.P.Malhamé, P.E.Caines, (2006). Large population stochastic dynamic games:Closed-loop McKean-Vlasov systems and the Nash certainty equivalence principle. Commun. Inf. Syst. 6:221–251.
-
(2006)
Commun. Inf. Syst
, vol.6
, pp. 221-251
-
-
Huang, M.1
Malhamé, R.P.2
Caines, P.E.3
-
28
-
-
0000104617
-
Nonlinear elliptic equations with singular boundary conditions and stochastic control with state constraints
-
J.-M.Lasry, P.-L.Lions, (1989). Nonlinear elliptic equations with singular boundary conditions and stochastic control with state constraints. Math. Ann. 283:583–630.
-
(1989)
Math. Ann
, vol.283
, pp. 583-630
-
-
Lasry, J.-M.1
Lions, P.-L.2
-
30
-
-
33751077273
-
Jeux à champ moyen. II. Horizon fini et contr\^ole optimal
-
J.-M.Lasry, P.-L.Lions, (2006). Jeux à champ moyen. II. Horizon fini et contr\^ole optimal. C. R. Math. Acad. Sci. Paris 343:679–684.
-
(2006)
C. R. Math. Acad. Sci. Paris
, vol.343
, pp. 679-684
-
-
Lasry, J.-M.1
Lions, P.-L.2
-
32
-
-
0000962350
-
Radial symmetry of positive solutions of nonlinear elliptic equations in rn
-
Y.Li, W.Ni, (1993). Radial symmetry of positive solutions of nonlinear elliptic equations in rn. Commun. Partial Differ. Equations 18:1043–1054.
-
(1993)
Commun. Partial Differ. Equations
, vol.18
, pp. 1043-1054
-
-
Li, Y.1
Ni, W.2
-
33
-
-
84980560297
-
-
Cours au collège de france. :
-
P.-L.Lions, Cours au collège de france. Available at:http://www.college-de-france.fr.
-
-
-
Lions, P.-L.1
-
34
-
-
10944249887
-
Stability of standing waves for some nonlinear schrödinger equations
-
J.B.McLeod, C.A.Stuart, W.C.Troy, (2003). Stability of standing waves for some nonlinear schrödinger equations. Differ. Integr. Equations 16:1025–1038.
-
(2003)
Differ. Integr. Equations
, vol.16
, pp. 1025-1038
-
-
McLeod, J.B.1
Stuart, C.A.2
Troy, W.C.3
-
36
-
-
84929729261
-
2-critical and supercritical NLS on bounded domains
-
2-critical and supercritical NLS on bounded domains. Anal. PDE 7:1807–1838.
-
(2014)
Anal. PDE
, vol.7
, pp. 1807-1838
-
-
Noris, B.1
Tavares, H.2
Verzini, G.3
-
37
-
-
84980535203
-
-
Regularity for second-order stationaty mean-field games. To appear in Indiana Univ. Math. J
-
E.Pimentel, V.Voskanyan, Regularity for second-order stationaty mean-field games. To appear in Indiana Univ. Math. J.
-
-
-
Pimentel, E.1
Voskanyan, V.2
-
38
-
-
0002403465
-
On the eigenfunctions of the equation Δu + λf(u) = 0
-
S.I.Pohožaev, (1965). On the eigenfunctions of the equation Δu + λf(u) = 0. Dokl. Akad. Nauk SSSR 165:36–39.
-
(1965)
Dokl. Akad. Nauk SSSR
, vol.165
, pp. 36-39
-
-
Pohožaev, S.I.1
-
39
-
-
0001733339
-
Uniqueness of ground states for quasilinear elliptic operators
-
P.Pucci, J.Serrin, (1998). Uniqueness of ground states for quasilinear elliptic operators. Indiana Univ. Math. J. 47:501–528.
-
(1998)
Indiana Univ. Math. J
, vol.47
, pp. 501-528
-
-
Pucci, P.1
Serrin, J.2
|