메뉴 건너뛰기




Volumn , Issue , 2016, Pages 54-61

Using longest common subsequence and character models to predict word forms

Author keywords

[No Author keywords available]

Indexed keywords

CHARACTER MODELS; FEATURE-BASED; LONGEST COMMON SUBSEQUENCES; N-GRAM MODELING; N-GRAM MODELS; NON-LOCAL PHENOMENA; PERFORMANCE; SUBTASK;

EID: 85058699011     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (15)

References (11)
  • 1
    • 80053262881 scopus 로고    scopus 로고
    • Discovering morphological paradigms from plain text using a dirichlet process mixture model
    • Association for Computational Linguistics
    • Markus Dreyer and Jason Eisner. 2011. Discovering morphological paradigms from plain text using a dirichlet process mixture model. In Proceedings of the Conference on Empirical Methods in Natural Language Processing, pages 616-627. Association for Computational Linguistics.
    • (2011) Proceedings of the Conference on Empirical Methods in Natural Language Processing , pp. 616-627
    • Dreyer, Markus1    Eisner, Jason2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.