메뉴 건너뛰기




Volumn , Issue , 2005, Pages 131-158

Overview of standard clustering approaches for gene microarray data analysis

Author keywords

[No Author keywords available]

Indexed keywords


EID: 85057406046     PISSN: None     EISSN: None     Source Type: Book    
DOI: None     Document Type: Chapter
Times cited : (3)

References (53)
  • 3
    • 0035375137 scopus 로고    scopus 로고
    • Computational analysis of microarray data
    • J. Quackenbush, Computational analysis of microarray data. Nature 2: 418-427, 2001.
    • (2001) Nature , vol.2 , pp. 418-427
    • Quackenbush, J.1
  • 5
    • 0004241258 scopus 로고    scopus 로고
    • 2nd ed. New York: Chapman & Hall/CRC
    • A.D. Gordon, Classification, 2nd ed. New York: Chapman & Hall/CRC, 1999.
    • (1999) Classification
    • Gordon, A.D.1
  • 6
    • 0035968207 scopus 로고    scopus 로고
    • Microarray analysis reveals previously unknown changes in toxoplasma gondii-infected human cells
    • I.J. Blader, I.D. Manger, and J.C. Boothroyd, Microarray analysis reveals previously unknown changes in toxoplasma gondii-infected human cells. Journal of Biological Chemistry 276: 24223-24231, 2001.
    • (2001) Journal of Biological Chemistry , vol.276 , pp. 24223-24231
    • Blader, I.J.1    Manger, I.D.2    Boothroyd, J.C.3
  • 14
    • 0000415463 scopus 로고
    • Dissimilarity analysis: A new technique of hierarchical sub-division
    • P. MacNaughton-Smith, W. Williams, M.B. Dale, and L.G. Mockett, Dissimilarity analysis: a new technique of hierarchical sub-division. Nature 202: 1034-1035, 1964.
    • (1964) Nature , vol.202 , pp. 1034-1035
    • MacNaughton-Smith, P.1    Williams, W.2    Dale, M.B.3    Mockett, L.G.4
  • 15
    • 0001138328 scopus 로고
    • A. ¿-means clustering algorithm
    • J.A. Hartigan and M.A. Wong, A. ¿-means clustering algorithm. Applied Statistics28: 100-108, 1979.
    • (1979) Applied Statistics , vol.28 , pp. 100-108
    • Hartigan, J.A.1    Wong, M.A.2
  • 16
    • 0020068152 scopus 로고
    • Analysis of a simple self-organizing process
    • T. Kohonen, Analysis of a simple self-organizing process. Biological Cybernetics, 43: 59-69, 1982.
    • (1982) Biological Cybernetics , vol.43 , pp. 59-69
    • Kohonen, T.1
  • 24
    • 0041654220 scopus 로고
    • Multidimensional scaling by optimizing goodness of fit to a non-metric hypotheses
    • J.B. Kruskal, Multidimensional scaling by optimizing goodness of fit to a non-metric hypotheses. Psychometrika 29: 1-27, 1964.
    • (1964) Psychometrika , vol.29 , pp. 1-27
    • Kruskal, J.B.1
  • 25
    • 0034800371 scopus 로고    scopus 로고
    • Principal component analysis for clustering gene expression data
    • K.Y. Yeung, and W.L. Ruzzo, Principal component analysis for clustering gene expression data. Bioinformatics 17: 763-774, 2001.
    • (2001) Bioinformatics , vol.17 , pp. 763-774
    • Yeung, K.Y.1    Ruzzo, W.L.2
  • 26
    • 0035375137 scopus 로고    scopus 로고
    • Computational analysis of microarray data
    • J, Quackenbush
    • J, Quackenbush, Computational analysis of microarray data. Nature Reviews in Genetics, 2: 418-427, 2001.
    • (2001) Nature Reviews in Genetics , vol.2 , pp. 418-427
  • 28
    • 0033657261 scopus 로고    scopus 로고
    • Principal components analysis to summarize microarray experiments: Application to sporulation time series
    • Waikiki, Hawaii
    • S. Raychaudhuri, J.M. Stuart, and R.B. Altman. Principal components analysis to summarize microarray experiments: application to sporulation time series. In Proceedings ofthe 5th Pacific Symposium on Biocomputing, Waikiki, Hawaii, 2000.
    • Proceedings Ofthe 5Th Pacific Symposium on Biocomputing , pp. 2000
    • Raychaudhuri, S.1    Stuart, J.M.2    Altman, R.B.3
  • 33
    • 0034710924 scopus 로고    scopus 로고
    • Discovering functional relationships between rna expression and chemotherapeutic susceptibility using relevance networks
    • A. Butte, P. Tamayo, D. Slonim, T.R. Golub, and I.S. Kohane, Discovering functional relationships between RNA expression and chemotherapeutic susceptibility using relevance networks. Proceedings of the National Academy of Sciences, USA 97: 12182-12186, 2000.
    • (2000) Proceedings of the National Academy of Sciences, USA , vol.97 , pp. 12182-12186
    • Butte, A.1    Tamayo, P.2    Slonim, D.3    Golub, T.R.4    Kohane, I.S.5
  • 34
    • 0035108235 scopus 로고    scopus 로고
    • A hierarchical unsupervised growing neural network for clustering gene expression patterns
    • J. Herrero, A. Valencia, and J. Dopazo, A hierarchical unsupervised growing neural network for clustering gene expression patterns. Bioinformatics 17: 126-136, 2001.
    • (2001) Bioinformatics , vol.17 , pp. 126-136
    • Herrero, J.1    Valencia, A.2    Dopazo, J.3
  • 36
    • 0032269108 scopus 로고    scopus 로고
    • How many clusters? Which clustering method? answers via model-based cluster analysis
    • C. Fraley and A.E. Raftery, How many clusters? Which clustering method? Answers via model-based cluster analysis. Computer Journal 41: 578-588, 1998.
    • (1998) Computer Journal , vol.41 , pp. 578-588
    • Fraley, C.1    Raftery, A.E.2
  • 37
    • 0036012375 scopus 로고    scopus 로고
    • Evaluation and comparison of clustering algorithms in analyzing es cell gene expression data
    • G. Chen, S.A. Jaradat, and Banerjee, Evaluation and comparison of clustering algorithms in analyzing ES cell gene expression data. Statistica Sinica 12: 241-262, 2002.
    • (2002) Statistica Sinica , vol.12 , pp. 241-262
    • Chen, G.1    Jaradat, S.A.2
  • 42
    • 0034334064 scopus 로고    scopus 로고
    • Assessing reliability of gene clusters from gene expression data
    • K. Zhang and H. Zhao, Assessing reliability of gene clusters from gene expression data. Functional and Integrative Genomics 1: 156-173, 2000.
    • (2000) Functional and Integrative Genomics , vol.1 , pp. 156-173
    • Zhang, K.1    Zhao, H.2
  • 44
    • 0036489046 scopus 로고    scopus 로고
    • Comparison of discrimination methods for the classification of tumors using gene expression data
    • S. Dudoit, J. Fridlyand, and T.P. Speed, Comparison of discrimination methods for the classification of tumors using gene expression data. Journal of the American Statistical Association 97: 77-87, 2002.
    • (2002) Journal of the American Statistical Association , vol.97 , pp. 77-87
    • Dudoit, S.1    Fridlyand, J.2    Speed, T.P.3
  • 46
    • 0000120766 scopus 로고
    • Estimating the dimension of a model
    • G. Schwarz, Estimating the dimension of a model. The Annals of Statistics 6: 461-464, 1978.
    • (1978) The Annals of Statistics , vol.6 , pp. 461-464
    • Schwarz, G.1
  • 47
    • 0037172724 scopus 로고    scopus 로고
    • A prediction-based resampling method for estimating the number of clusters in a dataset
    • S. Dudoit and J. Fridlyand, A prediction-based resampling method for estimating the number of clusters in a dataset. Genome Biology 3: 0036.1-0036.21, 2002.
    • (2002) Genome Biology , vol.3
    • Dudoit, S.1    Fridlyand, J.2
  • 49
    • 22844453564 scopus 로고    scopus 로고
    • Mclust: Software for model-based cluster analysis
    • C. Fraley and A.E. Raftery, MCLUST: software for model-based cluster analysis. Journal of Classification 16: 297-306, 1999.
    • (1999) Journal of Classification , vol.16 , pp. 297-306
    • Fraley, C.1    Raftery, A.E.2
  • 52
    • 0036169031 scopus 로고    scopus 로고
    • Andz. Trajanoski 1, genesis: Cluster analysis of microarray data
    • A. Sturn, J. Quackenbush, andZ. Trajanoski 1, Genesis: cluster analysis of microarray data. Bioinformatics 18: 207-208, 2002.
    • (2002) Bioinformatics , vol.18 , pp. 207-208
    • Sturn, A.1    Quackenbush, J.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.