메뉴 건너뛰기




Volumn 4, Issue 4, 2018, Pages

Contribution of remote sensing on crop models: A review

Author keywords

Crop models; Crop yield; Earth observation; Fusion; Spatio temporal scale; Vegetation indices; Yield prediction

Indexed keywords

CLIMATE CHANGE; CLIMATE MODELS; CROPS; DECISION MAKING; FOOD SUPPLY; FORECASTING;

EID: 85056495240     PISSN: None     EISSN: 2313433X     Source Type: Journal    
DOI: 10.3390/jimaging4040052     Document Type: Review
Times cited : (168)

References (127)
  • 1
    • 84908112373 scopus 로고    scopus 로고
    • Crop Growth Modeling and Its Applications in Agricultural Meteorology
    • Dehra Dun, India, 7–11 July 2003; World Meteorological Organisation: Dehra Dun, India
    • Murthy, V.R.K. Crop Growth Modeling and Its Applications in Agricultural Meteorology. In Proceedings of the Satellite Remote Sensing and GIS Applications in Agricultural Meteorology, Dehra Dun, India, 7–11 July 2003; World Meteorological Organisation: Dehra Dun, India, 2003; pp. 235–261.
    • (2003) Proceedings of The Satellite Remote Sensing and GIS Applications in Agricultural Meteorology , pp. 235-261
    • Murthy, V.R.K.1
  • 2
    • 0037232383 scopus 로고    scopus 로고
    • Modelling cropping systems—Highlights of the symposium and preface to the special issues
    • Van Ittersum, M.K.; Donatelli, M. Modelling cropping systems—Highlights of the symposium and preface to the special issues. Eur. J. Agron. 2003, 18, 187–197. [CrossRef]
    • (2003) Eur. J. Agron. , vol.18 , pp. 187-197
    • Van Ittersum, M.K.1    Donatelli, M.2
  • 4
    • 0036915694 scopus 로고    scopus 로고
    • Examples of strategies to analyze spatial and temporal yield variability using crop models
    • Batchelor, W.D.; Basso, B.; Paz, J.O. Examples of strategies to analyze spatial and temporal yield variability using crop models. Eur. J. Agron. 2002, 18, 141–158. [CrossRef]
    • (2002) Eur. J. Agron. , vol.18 , pp. 141-158
    • Batchelor, W.D.1    Basso, B.2    Paz, J.O.3
  • 12
    • 67650928663 scopus 로고    scopus 로고
    • Crops and climate change: Progress, trends, and challenges in simulating impacts and informing adaptation
    • CrossRef PubMed
    • Challinor, A.J.; Ewert, F.; Arnold, S.; Simelton, E.; Fraser, E. Crops and climate change: Progress, trends, and challenges in simulating impacts and informing adaptation. J. Exp. Bot. 2009, 60, 2775–2789. [CrossRef] [PubMed]
    • (2009) J. Exp. Bot. , vol.60 , pp. 2775-2789
    • Challinor, A.J.1    Ewert, F.2    Arnold, S.3    Simelton, E.4    Fraser, E.5
  • 13
    • 85016913950 scopus 로고    scopus 로고
    • A review of crop growth simulation models as tools for agricultural meteorology
    • Rauff, K.O.; Bello, R. A review of crop growth simulation models as tools for agricultural meteorology. Agric. Sci. 2015, 6, 8. [CrossRef]
    • (2015) Agric. Sci. , vol.6 , pp. 8
    • Rauff, K.O.1    Bello, R.2
  • 14
    • 77956883074 scopus 로고    scopus 로고
    • On the use of statistical models to predict crop yield responses to climate change
    • Lobell, D.B.; Burke, M.B. On the use of statistical models to predict crop yield responses to climate change. Agric. For. Meteorol. 2010, 150, 1443–1452. [CrossRef]
    • (2010) Agric. For. Meteorol. , vol.150 , pp. 1443-1452
    • Lobell, D.B.1    Burke, M.B.2
  • 15
    • 84956618211 scopus 로고    scopus 로고
    • An overview of available crop growth and yield models for studies and assessments in agriculture
    • CrossRef PubMed
    • Di Paola, A.; Valentini, R.; Santini, M. An overview of available crop growth and yield models for studies and assessments in agriculture. J. Sci. Food Agric. 2016, 96, 709–714. [CrossRef] [PubMed]
    • (2016) J. Sci. Food Agric. , vol.96 , pp. 709-714
    • Di Paola, A.1    Valentini, R.2    Santini, M.3
  • 18
    • 85008940854 scopus 로고    scopus 로고
    • Toward a new generation of agricultural system data, models, and knowledge products: State of agricultural systems science
    • CrossRef PubMed
    • Jones, J.W.; Antle, J.M.; Basso, B.; Boote, K.J.; Conant, R.T.; Foster, I.; Godfray, H.C.J.; Herrero, M.; Howitt, R.E.; Janssen, S.; et al. Toward a new generation of agricultural system data, models, and knowledge products: State of agricultural systems science. Agric. Syst. 2017, 155, 269–288. [CrossRef] [PubMed]
    • (2017) Agric. Syst. , vol.155 , pp. 269-288
    • Jones, J.W.1    Antle, J.M.2    Basso, B.3    Boote, K.J.4    Conant, R.T.5    Foster, I.6    Godfray, H.C.J.7    Herrero, M.8    Howitt, R.E.9    Janssen, S.10
  • 20
    • 84940707783 scopus 로고    scopus 로고
    • Identifying traits for genotypic adaptation using crop models
    • CrossRef PubMed
    • Ramirez-Villegas, J.; Watson, J.; Challinor, A.J. Identifying traits for genotypic adaptation using crop models. J. Exp. Bot. 2015, 66, 3451–3462. [CrossRef] [PubMed]
    • (2015) J. Exp. Bot. , vol.66 , pp. 3451-3462
    • Ramirez-Villegas, J.1    Watson, J.2    Challinor, A.J.3
  • 21
    • 85013746834 scopus 로고    scopus 로고
    • From oryza2000 to oryza (v3): An improved simulation model for rice in drought and nitrogen-deficient environments
    • CrossRef PubMed
    • Li, T.; Angeles, O.; Marcaida, M.; Manalo, E.; Manalili, M.P.; Radanielson, A.; Mohanty, S. From oryza2000 to oryza (v3): An improved simulation model for rice in drought and nitrogen-deficient environments. Agric. For. Meteorol. 2017, 237–238, 246–256. [CrossRef] [PubMed]
    • (2017) Agric. For. Meteorol. , vol.237-238 , pp. 246-256
    • Li, T.1    Angeles, O.2    Marcaida, M.3    Manalo, E.4    Manalili, M.P.5    Radanielson, A.6    Mohanty, S.7
  • 23
    • 0029749373 scopus 로고    scopus 로고
    • Apsim: A novel software system for model development, model testing and simulation in agricultural systems research
    • McCown, R.L.; Hammer, G.L.; Hargreaves, J.N.G.; Holzworth, D.P.; Freebairn, D.M. Apsim: A novel software system for model development, model testing and simulation in agricultural systems research. Agric. Syst. 1996, 50, 255–271. [CrossRef]
    • (1996) Agric. Syst. , vol.50 , pp. 255-271
    • McCown, R.L.1    Hammer, G.L.2    Hargreaves, J.N.G.3    Holzworth, D.P.4    Freebairn, D.M.5
  • 24
    • 65849155515 scopus 로고    scopus 로고
    • Aquacrop—The fao crop model to simulate yield response to water
    • Steduto, P.; Hsiao, T.C.; Raes, D.; Fereres, E. Aquacrop—The fao crop model to simulate yield response to water. Agron. J. 2009, 101, 426–437. [CrossRef]
    • (2009) Agron. J. , vol.101 , pp. 426-437
    • Steduto, P.1    Hsiao, T.C.2    Raes, D.3    Fereres, E.4
  • 25
    • 0037232380 scopus 로고    scopus 로고
    • Cropsyst, a cropping systems simulation model
    • St ckle, C.O.; Donatelli, M.; Nelson, R. Cropsyst, a cropping systems simulation model. Eur. J. Agron. 2003, 18, 289–307. [CrossRef]
    • (2003) Eur. J. Agron. , vol.18 , pp. 289-307
    • St ckle, C.O.1    Donatelli, M.2    Nelson, R.3
  • 27
    • 4344595078 scopus 로고    scopus 로고
    • Simulation of above-ground suppression of competing species and competition tolerance in winter wheat varieties
    • Olesen, J.E.; Hansen, P.K.; Berntsen, J.; Christensen, S. Simulation of above-ground suppression of competing species and competition tolerance in winter wheat varieties. Field Crops Res. 2004, 89, 263–280. [CrossRef]
    • (2004) Field Crops Res , vol.89 , pp. 263-280
    • Olesen, J.E.1    Hansen, P.K.2    Berntsen, J.3    Christensen, S.4
  • 28
    • 29544435853 scopus 로고    scopus 로고
    • Description and evaluation of the rice growth model oryza2000 under nitrogen-limited conditions
    • Bouman, B.A.M.; van Laar, H.H. Description and evaluation of the rice growth model oryza2000 under nitrogen-limited conditions. Agric. Syst. 2006, 87, 249–273. [CrossRef]
    • (2006) Agric. Syst. , vol.87 , pp. 249-273
    • Bouman, B.A.M.1    Van Laar, H.H.2
  • 30
    • 7844245054 scopus 로고    scopus 로고
    • Stics: A generic model for the simulation of crops and their water and nitrogen balances. I. Theory and parameterization applied to wheat and corn
    • Brisson, N.; Mary, B.; Ripoche, D.; Jeuffroy, M.H.; Ruget, F.; Nicoullaud, B.; Gate, P.; Devienne-Barret, F.; Antonioletti, R.; Durr, C.; et al. Stics: A generic model for the simulation of crops and their water and nitrogen balances. I. Theory and parameterization applied to wheat and corn. Agronomie 1998, 18, 311–346. [CrossRef]
    • (1998) Agronomie , vol.18 , pp. 311-346
    • Brisson, N.1    Mary, B.2    Ripoche, D.3    Jeuffroy, M.H.4    Ruget, F.5    Nicoullaud, B.6    Gate, P.7    Devienne-Barret, F.8    Antonioletti, R.9    Durr, C.10
  • 31
    • 0027007565 scopus 로고
    • Linking physical remote sensing models with crop growth simulation models, applied for sugar beet
    • Bouman, B.A.M. Linking physical remote sensing models with crop growth simulation models, applied for sugar beet. Int. J. Remote Sens. 1992, 13, 2565–2581. [CrossRef]
    • (1992) Int. J. Remote Sens. , vol.13 , pp. 2565-2581
    • Bouman, B.A.M.1
  • 36
    • 0030465703 scopus 로고    scopus 로고
    • Crop growth models for decision support systems
    • Jame, Y.W.; Cutforth, H.W. Crop growth models for decision support systems. Can. J. Plant Sci. 1996, 76, 9–19. [CrossRef]
    • (1996) Can. J. Plant Sci. , vol.76 , pp. 9-19
    • Jame, Y.W.1    Cutforth, H.W.2
  • 37
    • 4444268914 scopus 로고    scopus 로고
    • Role of crop physiology in predicting gene-to-phenotype relationships
    • CrossRef PubMed
    • Yin, X.Y.; Struik, P.C.; Kropff, M.J. Role of crop physiology in predicting gene-to-phenotype relationships. Trends Plant Sci. 2004, 9, 426–432. [CrossRef] [PubMed]
    • (2004) Trends Plant Sci , vol.9 , pp. 426-432
    • Yin, X.Y.1    Struik, P.C.2    Kropff, M.J.3
  • 38
    • 84929661133 scopus 로고    scopus 로고
    • Can current crop models be used in the phenotyping era for predicting the genetic variability of yield of plants subjected to drought or high temperature?
    • CrossRef PubMed
    • Parent, B.; Tardieu, F. Can current crop models be used in the phenotyping era for predicting the genetic variability of yield of plants subjected to drought or high temperature? J. Exp. Bot. 2014, 65, 6179–6189. [CrossRef] [PubMed]
    • (2014) J. Exp. Bot. , vol.65 , pp. 6179-6189
    • Parent, B.1    Tardieu, F.2
  • 39
    • 79251477164 scopus 로고    scopus 로고
    • Yield-trait performance landscapes: From theory to application in breeding maize for drought tolerance
    • CrossRef PubMed
    • Messina, C.D.; Podlich, D.; Dong, Z.S.; Samples, M.; Cooper, M. Yield-trait performance landscapes: From theory to application in breeding maize for drought tolerance. J. Exp. Bot. 2011, 62, 855–868. [CrossRef] [PubMed]
    • (2011) J. Exp. Bot. , vol.62 , pp. 855-868
    • Messina, C.D.1    Podlich, D.2    Dong, Z.S.3    Samples, M.4    Cooper, M.5
  • 40
    • 33845297262 scopus 로고    scopus 로고
    • Impacts of future climate change on California perennial crop yields: Model projections with climate and crop uncertainties
    • Lobell, D.B.; Field, C.B.; Cahill, K.N.; Bonfils, C. Impacts of future climate change on california perennial crop yields: Model projections with climate and crop uncertainties. Agric. For. Meteorol. 2006, 141, 208–218. [CrossRef]
    • (2006) Agric. For. Meteorol. , vol.141 , pp. 208-218
    • Lobell, D.B.1    Field, C.B.2    Cahill, K.N.3    Bonfils, C.4
  • 41
    • 84940654541 scopus 로고    scopus 로고
    • Comparing the effects of calibration and climate errors on a statistical crop model and a process-based crop model
    • Watson, J.; Challinor, A.J.; Fricker, T.E.; Ferro, C.A.T. Comparing the effects of calibration and climate errors on a statistical crop model and a process-based crop model. Clim. Chang 2015, 132, 93–109. [CrossRef]
    • (2015) Clim. Chang , vol.132 , pp. 93-109
    • Watson, J.1    Challinor, A.J.2    Fricker, T.E.3    Ferro, C.A.T.4
  • 44
    • 84861008949 scopus 로고    scopus 로고
    • Performance of the fao aquacrop model for wheat grain yield and soil moisture simulation in western Canada
    • Mkhabela, M.S.; Bullock, P.R. Performance of the fao aquacrop model for wheat grain yield and soil moisture simulation in western Canada. Agric. Water Manag. 2012, 110, 16–24. [CrossRef]
    • (2012) Agric. Water Manag. , vol.110 , pp. 16-24
    • Mkhabela, M.S.1    Bullock, P.R.2
  • 45
    • 0000358033 scopus 로고
    • Climate and the efficiency of crop production in Britain [and discussion
    • Monteith, J.L.; Moss, C.J. Climate and the efficiency of crop production in britain [and discussion]. Philos. Trans. R. Soc. Lond. Series B Biol. Sci. 1977, 281, 277–294. [CrossRef]
    • (1977) Philos. Trans. R. Soc. Lond. Series B Biol. Sci. , vol.281 , pp. 277-294
    • Monteith, J.L.1    Moss, C.J.2
  • 46
    • 0002529258 scopus 로고
    • Minimum Data Sets for Agrotechnology Transfer
    • ICRISAT Center, Patancheru, India, 21–26 March 1983; ICRISAT Center: Patancheru, India
    • Nix, H.A. Minimum Data Sets for Agrotechnology Transfer. In Proceedings of the International Symposium on Minimum Data Sets for Agrotechnology Transfer, ICRISAT Center, Patancheru, India, 21–26 March 1983; ICRISAT Center: Patancheru, India, 1983; pp. 181–188.
    • (1983) Proceedings of The International Symposium on Minimum Data Sets for Agrotechnology Transfer , pp. 181-188
    • Nix, H.A.1
  • 47
    • 0002753743 scopus 로고    scopus 로고
    • Data for model operation, calibration, and evaluation
    • Tsuji, G.Y., Hoogenboom, G., Thornton, K., Eds.; Springer: Dordrecht, The Netherlands
    • Hunt, L.A.; Boote, K.J. Data for model operation, calibration, and evaluation. In Understanding Options for Agricultural Production; Tsuji, G.Y., Hoogenboom, G., Thornton, P.K., Eds.; Springer: Dordrecht, The Netherlands, 1998; pp. 9–39.
    • (1998) Understanding Options for Agricultural Production , pp. 9-39
    • Hunt, L.A.1    Boote, K.J.2
  • 50
    • 0030473596 scopus 로고    scopus 로고
    • Potential uses and limitations of crop models
    • Boote, K.J.; Jones, J.W.; Pickering, N.B. Potential uses and limitations of crop models. Agron. J. 1996, 88, 704–716. [CrossRef]
    • (1996) Agron. J. , vol.88 , pp. 704-716
    • Boote, K.J.1    Jones, J.W.2    Pickering, N.B.3
  • 51
    • 0001295404 scopus 로고    scopus 로고
    • Parameterization of agricultural system models: Current approaches and future needs
    • Lewis Publishers: Boca Raton, FL, USA
    • Ahuja, L.R.; Ma, L. Parameterization of agricultural system models: Current approaches and future needs. In Agricultural System Models in Field Research and Technology Transfer; Lewis Publishers: Boca Raton, FL, USA, 2002.
    • (2002) Agricultural System Models in Field Research and Technology Transfer
    • Ahuja, L.R.1    Ma, L.2
  • 54
    • 0017007910 scopus 로고
    • Progress in remote sensing (1972–1976)
    • Fischer, W.A.; Hemphill, W.R.; Kover, A. Progress in remote sensing (1972–1976). Photogrammetria 1976, 32, 33–72. [CrossRef]
    • (1976) Photogrammetria , vol.32 , pp. 33-72
    • Fischer, W.A.1    Hemphill, W.R.2    Kover, A.3
  • 57
    • 0000960084 scopus 로고
    • Leaf area index estimates for wheat from landsat and their implications for evapotranspiration and crop modeling
    • Wiegand, C.L.; Richardson, A.J.; Kanemasu, E.T. Leaf area index estimates for wheat from landsat and their implications for evapotranspiration and crop modeling. Agron. J. 1979, 71, 336–342. [CrossRef]
    • (1979) Agron. J. , vol.71 , pp. 336-342
    • Wiegand, C.L.1    Richardson, A.J.2    Kanemasu, E.T.3
  • 59
    • 40849110190 scopus 로고    scopus 로고
    • Vegetation indices: Advances made in biomass estimation and vegetation monitoring in the last 30 years
    • Silleos, N.G.; Alexandridis, T.K.; Gitas, I.Z.; Perakis, K. Vegetation indices: Advances made in biomass estimation and vegetation monitoring in the last 30 years. Geocarto Int. 2006, 21, 21–28. [CrossRef]
    • (2006) Geocarto Int , vol.21 , pp. 21-28
    • Silleos, N.G.1    Alexandridis, T.K.2    Gitas, I.Z.3    Perakis, K.4
  • 60
    • 0026305589 scopus 로고
    • Potentials and limits of vegetation indices for LAI and APAR assessment
    • Baret, F.; Guyot, G. Potentials and limits of vegetation indices for LAI and APAR assessment. Remote Sens. Environ. 1991, 35, 161–173. [CrossRef]
    • (1991) Remote Sens. Environ. , vol.35 , pp. 161-173
    • Baret, F.1    Guyot, G.2
  • 61
    • 0035031849 scopus 로고    scopus 로고
    • Comparing prediction power and stability of broadband and hyperspectral vegetation indices for estimation of green leaf area index and canopy chlorophyll density
    • Broge, N.H.; Leblanc, E. Comparing prediction power and stability of broadband and hyperspectral vegetation indices for estimation of green leaf area index and canopy chlorophyll density. Remote Sens. Environ. 2001, 76, 156–172. [CrossRef]
    • (2001) Remote Sens. Environ. , vol.76 , pp. 156-172
    • Broge, N.H.1    Leblanc, E.2
  • 63
    • 0028534080 scopus 로고
    • A framework for monitoring crop growth by combining directional and spectral remote sensing information
    • Clevers, J.; Buler, C.; Vanleeuwen, H.; Bouman, B. A framework for monitoring crop growth by combining directional and spectral remote sensing information. Remote Sens. Environ. 1994, 50, 161–170. [CrossRef]
    • (1994) Remote Sens. Environ. , vol.50 , pp. 161-170
    • Clevers, J.1    Buler, C.2    Vanleeuwen, H.3    Bouman, B.4
  • 64
    • 68149089952 scopus 로고    scopus 로고
    • Crop Growth and Productivity Monitoring and Simulation Using Remote Sensing and Gis
    • Dehra Dun, India, 7–13 July 2003; Indian Institute of Remote Sensing: Dehra Dun, India
    • Dadhwal, V. Crop Growth and Productivity Monitoring and Simulation Using Remote Sensing and Gis. In Proceedings of the Remote Sensing and GIS Applications in Agricultural Meteorology, Dehra Dun, India, 7–13 July 2003; Indian Institute of Remote Sensing: Dehra Dun, India, 2003; pp. 263–289.
    • (2003) Proceedings of The Remote Sensing and GIS Applications in Agricultural Meteorology , pp. 263-289
    • Dadhwal, V.1
  • 65
    • 84908530182 scopus 로고    scopus 로고
    • A review of imaging techniques for plant phenotyping
    • CrossRef PubMed
    • Li, L.; Zhang, Q.; Huang, D.F. A review of imaging techniques for plant phenotyping. Sensors 2014, 14, 20078–20111. [CrossRef] [PubMed]
    • (2014) Sensors , vol.14 , pp. 20078-20111
    • Li, L.1    Zhang, Q.2    Huang, D.F.3
  • 67
    • 84943375226 scopus 로고    scopus 로고
    • Improving remotely sensed actual evapotranspiration estimation with raster meteorological data
    • Cherif, I.; Alexandridis, T.K.; Jauch, E.; Chambel-Leitao, P.; Almeida, C. Improving remotely sensed actual evapotranspiration estimation with raster meteorological data. Int. J. Remote Sens. 2015, 36, 4606–4620. [CrossRef]
    • (2015) Int. J. Remote Sens. , vol.36 , pp. 4606-4620
    • Cherif, I.1    Alexandridis, T.K.2    Jauch, E.3    Chambel-Leitao, P.4    Almeida, C.5
  • 68
    • 84958741578 scopus 로고    scopus 로고
    • Spatial and temporal distribution of soil moisture at the catchment scale using remotely-sensed energy fluxes
    • Alexandridis, T.K.; Cherif, I.; Bilas, G.; Almeida, W.G.; Hartanto, I.M.; van Andel, S.J.; Araujo, A. Spatial and temporal distribution of soil moisture at the catchment scale using remotely-sensed energy fluxes. Water 2016, 8, 32. [CrossRef]
    • (2016) Water , vol.8 , pp. 32
    • Alexandridis, T.K.1    Cherif, I.2    Bilas, G.3    Almeida, W.G.4    Hartanto, I.M.5    Van Andel, S.J.6    Araujo, A.7
  • 69
    • 84861380412 scopus 로고    scopus 로고
    • Assimilating remote sensing observations of leaf area index and soil moisture for wheat yield estimates: An observing system simulation experiment
    • Nearing, G.S.; Crow, W.T.; Thorp, K.R.; Moran, M.S.; Reichle, R.H.; Gupta, H.V. Assimilating remote sensing observations of leaf area index and soil moisture for wheat yield estimates: An observing system simulation experiment. Water Resour. Res. 2012, 48. [CrossRef]
    • (2012) Water Resour. Res. , vol.48
    • Nearing, G.S.1    Crow, W.T.2    Thorp, K.R.3    Moran, M.S.4    Reichle, R.H.5    Gupta, H.V.6
  • 70
    • 26444502557 scopus 로고    scopus 로고
    • Assimilating remote sensing data into a crop model to improve predictive performance for spatial applications
    • Launay, M.; Guerif, M. Assimilating remote sensing data into a crop model to improve predictive performance for spatial applications. Agric. Ecosyst. Environ. 2005, 111, 321–339. [CrossRef]
    • (2005) Agric. Ecosyst. Environ. , vol.111 , pp. 321-339
    • Launay, M.1    Guerif, M.2
  • 71
    • 80355128274 scopus 로고    scopus 로고
    • Use of remote sensing data to assist crop modeling
    • Oppelt, N.M. Use of remote sensing data to assist crop modeling. J. Appl. Remote Sens. 2010, 4, 041896. [CrossRef]
    • (2010) J. Appl. Remote Sens. , vol.4 , pp. 041896
    • Oppelt, N.M.1
  • 72
    • 84883544681 scopus 로고    scopus 로고
    • Hyperspectral versus multispectral crop-productivity modeling and type discrimination for the hyspiri mission
    • Mariotto, I.; Thenkabail, P.S.; Huete, A.; Slonecker, E.T.; Platonov, A. Hyperspectral versus multispectral crop-productivity modeling and type discrimination for the hyspiri mission. Remote Sens. Environ. 2013, 139, 291–305. [CrossRef]
    • (2013) Remote Sens. Environ. , vol.139 , pp. 291-305
    • Mariotto, I.1    Thenkabail, P.S.2    Huete, A.3    Slonecker, E.T.4    Platonov, A.5
  • 73
  • 74
    • 85038245945 scopus 로고    scopus 로고
    • Evaluating canopy spectral reflectance vegetation indices to estimate nitrogen use traits in hard winter wheat
    • Frels, K.; Guttieri, M.; Joyce, B.; Leavitt, B.; Baenziger, P.S. Evaluating canopy spectral reflectance vegetation indices to estimate nitrogen use traits in hard winter wheat. Field Crops Res. 2018, 217, 82–92. [CrossRef]
    • (2018) Field Crops Res , vol.217 , pp. 82-92
    • Frels, K.1    Guttieri, M.2    Joyce, B.3    Leavitt, B.4    Baenziger, P.S.5
  • 75
    • 84979645273 scopus 로고    scopus 로고
    • Temporal dynamics of maize plant growth, water use, and leaf water content using automated high throughput rgb and hyperspectral imaging
    • Ge, Y.; Bai, G.; Stoerger, V.; Schnable, J.C. Temporal dynamics of maize plant growth, water use, and leaf water content using automated high throughput rgb and hyperspectral imaging. Comput. Electron. Agric. 2016, 127, 625–632. [CrossRef]
    • (2016) Comput. Electron. Agric. , vol.127 , pp. 625-632
    • Ge, Y.1    Bai, G.2    Stoerger, V.3    Schnable, J.C.4
  • 76
    • 84942543701 scopus 로고    scopus 로고
    • Assimilation of two variables derived from hyperspectral data into the dssat-ceres model for grain yield and quality estimation
    • Li, Z.; Wang, J.; Xu, X.; Zhao, C.; Jin, X.; Yang, G.; Feng, H. Assimilation of two variables derived from hyperspectral data into the dssat-ceres model for grain yield and quality estimation. Remote Sens. 2015, 7, 12400–12418. [CrossRef]
    • (2015) Remote Sens , vol.7 , pp. 12400-12418
    • Li, Z.1    Wang, J.2    Xu, X.3    Zhao, C.4    Jin, X.5    Yang, G.6    Feng, H.7
  • 77
    • 85033228627 scopus 로고    scopus 로고
    • A review of data assimilation of remote sensing and crop models
    • Jin, X.; Kumar, L.; Li, Z.; Feng, H.; Xu, X.; Yang, G.; Wang, J. A review of data assimilation of remote sensing and crop models. Eur. J. Agron. 2018, 92, 141–152. [CrossRef]
    • (2018) Eur. J. Agron. , vol.92 , pp. 141-152
    • Jin, X.1    Kumar, L.2    Li, Z.3    Feng, H.4    Xu, X.5    Yang, G.6    Wang, J.7
  • 80
    • 84912057005 scopus 로고    scopus 로고
    • Monitoring of crop biomass using true colour aerial photographs taken from a remote controlled hexacopter
    • Jannoura, R.; Brinkmann, K.; Uteau, D.; Bruns, C.; Joergensen, R.G. Monitoring of crop biomass using true colour aerial photographs taken from a remote controlled hexacopter. Biosyst. Eng. 2015, 129, 341–351. [CrossRef]
    • (2015) Biosyst. Eng. , vol.129 , pp. 341-351
    • Jannoura, R.1    Brinkmann, K.2    Uteau, D.3    Bruns, C.4    Joergensen, R.G.5
  • 81
    • 84951143320 scopus 로고    scopus 로고
    • Are vegetation indices derived from consumer-grade cameras mounted on UAVs sufficiently reliable for assessing experimental plots?
    • Rasmussen, J.; Ntakos, G.; Nielsen, J.; Svensgaard, J.; Poulsen, R.N.; Christensen, S. Are vegetation indices derived from consumer-grade cameras mounted on UAVs sufficiently reliable for assessing experimental plots? Eur. J. Agron. 2016, 74, 75–92. [CrossRef]
    • (2016) Eur. J. Agron. , vol.74 , pp. 75-92
    • Rasmussen, J.1    Ntakos, G.2    Nielsen, J.3    Svensgaard, J.4    Poulsen, R.N.5    Christensen, S.6
  • 82
    • 85034756154 scopus 로고    scopus 로고
    • Hyperspectral imaging: A review on UAV-based sensors, data processing and applications for agriculture and forestry
    • Adao, T.; Hruska, J.; Padua, L.; Bessa, J.; Peres, E.; Morais, R.; Sousa, J.J. Hyperspectral imaging: A review on UAV-based sensors, data processing and applications for agriculture and forestry. Remote Sens. 2017, 9, 1110. [CrossRef]
    • (2017) Remote Sens , vol.9 , pp. 1110
    • Adao, T.1    Hruska, J.2    Padua, L.3    Bessa, J.4    Peres, E.5    Morais, R.6    Sousa, J.J.7
  • 83
    • 85038247198 scopus 로고    scopus 로고
    • Estimation of wheat LAI at middle to high levels using unmanned aerial vehicle narrowband multispectral imagery
    • Yao, X.; Wang, N.; Liu, Y.; Cheng, T.; Tian, Y.; Chen, Q.; Zhu, Y. Estimation of wheat LAI at middle to high levels using unmanned aerial vehicle narrowband multispectral imagery. Remote Sens. 2017, 9, 1304. [CrossRef]
    • (2017) Remote Sens , vol.9 , pp. 1304
    • Yao, X.1    Wang, N.2    Liu, Y.3    Cheng, T.4    Tian, Y.5    Chen, Q.6    Zhu, Y.7
  • 84
    • 84923067509 scopus 로고    scopus 로고
    • Multi-temporal imaging using an unmanned aerial vehicle for monitoring a sunflower crop
    • Vega, F.A.; Ramírez, F.C.; Saiz, M.P.; Rosúa, F.O. Multi-temporal imaging using an unmanned aerial vehicle for monitoring a sunflower crop. Biosyst. Eng. 2015, 132, 19–27. [CrossRef]
    • (2015) Biosyst. Eng. , vol.132 , pp. 19-27
    • Vega, F.A.1    Ramírez, F.C.2    Saiz, M.P.3    Rosúa, F.O.4
  • 87
    • 84881223233 scopus 로고    scopus 로고
    • Geov1: LAI, fapar essential climate variables and fcover global time series capitalizing over existing products. Part 2: Validation and intercomparison with reference products
    • Camacho, F.; Cernicharo, J.; Lacaze, R.; Baret, F.; Weiss, M. Geov1: LAI, fapar essential climate variables and fcover global time series capitalizing over existing products. Part 2: Validation and intercomparison with reference products. Remote Sens. Environ. 2013, 137, 310–329. [CrossRef]
    • (2013) Remote Sens. Environ. , vol.137 , pp. 310-329
    • Camacho, F.1    Cernicharo, J.2    Lacaze, R.3    Baret, F.4    Weiss, M.5
  • 88
    • 85016965709 scopus 로고    scopus 로고
    • Relationship between MODIS-ndvi data and wheat yield: A case study in northern buenos aires province, Argentina
    • Lopresti, M.F.; Di Bella, C.M.; Degioanni, A.J. Relationship between MODIS-ndvi data and wheat yield: A case study in northern buenos aires province, Argentina. Inf. Process. Agric. 2015, 2, 73–84. [CrossRef]
    • (2015) Inf. Process. Agric. , vol.2 , pp. 73-84
    • Lopresti, M.F.1    Di Bella, C.M.2    Degioanni, A.J.3
  • 89
    • 33847325765 scopus 로고    scopus 로고
    • A simple model of regional wheat yield based on NDVI data
    • Moriondo, M.; Maselli, F.; Bindi, M. A simple model of regional wheat yield based on NDVI data. Eur. J. Agron. 2007, 26, 266–274. [CrossRef]
    • (2007) Eur. J. Agron. , vol.26 , pp. 266-274
    • Moriondo, M.1    Maselli, F.2    Bindi, M.3
  • 90
    • 84875117682 scopus 로고    scopus 로고
    • Forecasting crop yield using remotely sensed vegetation indices and crop phenology metrics
    • Bolton, D.K.; Friedl, M.A. Forecasting crop yield using remotely sensed vegetation indices and crop phenology metrics. Agric. For. Meteorol. 2013, 173, 74–84. [CrossRef]
    • (2013) Agric. For. Meteorol. , vol.173 , pp. 74-84
    • Bolton, D.K.1    Friedl, M.A.2
  • 92
    • 84888050432 scopus 로고    scopus 로고
    • An assessment of pre- And within-season remotely sensed variables for forecasting corn and soybean yields in the United States
    • Johnson, D.M. An assessment of pre- and within-season remotely sensed variables for forecasting corn and soybean yields in the united states. Remote Sens. Environ. 2014, 141, 116–128. [CrossRef]
    • (2014) Remote Sens. Environ. , vol.141 , pp. 116-128
    • Johnson, D.M.1
  • 93
    • 0030158053 scopus 로고    scopus 로고
    • Yield estimation for corn and wheat in the hungarian great plain using Landsat mss data
    • Hamar, D.; Ferencz, C.; Lichtenberger, J.; Tarcsai, G.; Ferencz-ÁRkos, I. Yield estimation for corn and wheat in the hungarian great plain using Landsat mss data. Int. J. Remote Sens. 1996, 17, 1689–1699. [CrossRef]
    • (1996) Int. J. Remote Sens. , vol.17 , pp. 1689-1699
    • Hamar, D.1    Ferencz, C.2    Lichtenberger, J.3    Tarcsai, G.4    Ferencz-ÁRkos, I.5
  • 94
    • 31044453033 scopus 로고    scopus 로고
    • Crop yield estimation model for Iowa using remote sensing and surface parameters
    • Prasad, A.K.; Chai, L.; Singh, R.P.; Kafatos, M. Crop yield estimation model for iowa using remote sensing and surface parameters. Int. J. Appl. Earth Observ. Geoinf. 2006, 8, 26–33. [CrossRef]
    • (2006) Int. J. Appl. Earth Observ. Geoinf. , vol.8 , pp. 26-33
    • Prasad, A.K.1    Chai, L.2    Singh, R.P.3    Kafatos, M.4
  • 95
    • 84941358545 scopus 로고    scopus 로고
    • Winter oilseed rape and winter wheat growth prediction using remote sensing methods
    • Dominguez, J.A.; Kumhalova, J.; Novak, P. Winter oilseed rape and winter wheat growth prediction using remote sensing methods. Plant Soil Environ. 2015, 61, 410–416.
    • (2015) Plant Soil Environ , vol.61 , pp. 410-416
    • Dominguez, J.A.1    Kumhalova, J.2    Novak, P.3
  • 96
    • 84979725341 scopus 로고    scopus 로고
    • Assimilation of LAI and dry biomass data from optical and SAR images into an agro-meteorological model to estimate soybean yield
    • Julie, B.; Remy, F.; Frederic, B. Assimilation of LAI and dry biomass data from optical and SAR images into an agro-meteorological model to estimate soybean yield. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 2016, 9, 2540–2553.
    • (2016) IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. , vol.9 , pp. 2540-2553
    • Julie, B.1    Remy, F.2    Frederic, B.3
  • 97
    • 85012071184 scopus 로고    scopus 로고
    • Winter wheat yield estimation based on multi-source medium resolution optical and radar imaging data and the aquacrop model using the particle swarm optimization algorithm
    • Jin, X.; Li, Z.; Yang, G.; Yang, H.; Feng, H.; Xu, X.; Wang, J.; Li, X.; Luo, J. Winter wheat yield estimation based on multi-source medium resolution optical and radar imaging data and the aquacrop model using the particle swarm optimization algorithm. ISPRS J. Photogramm. Remote Sens. 2017, 126, 24–37. [CrossRef]
    • (2017) ISPRS J. Photogramm. Remote Sens. , vol.126 , pp. 24-37
    • Jin, X.1    Li, Z.2    Yang, G.3    Yang, H.4    Feng, H.5    Xu, X.6    Wang, J.7    Li, X.8    Luo, J.9
  • 98
    • 33645711391 scopus 로고    scopus 로고
    • Predicting winter wheat condition, grain yield and protein content using multi-temporal envisat-asar and Landsat TM satellite images
    • Liu, L.Y.; Wang, J.J.; Bao, Y.S.; Huang, W.J.; Ma, Z.H.; Zhao, C.J. Predicting winter wheat condition, grain yield and protein content using multi-temporal envisat-asar and Landsat TM satellite images. Int. J. Remote Sens. 2006, 27, 737–753. [CrossRef]
    • (2006) Int. J. Remote Sens. , vol.27 , pp. 737-753
    • Liu, L.Y.1    Wang, J.J.2    Bao, Y.S.3    Huang, W.J.4    Ma, Z.H.5    Zhao, C.J.6
  • 99
    • 85009477151 scopus 로고    scopus 로고
    • Estimation of rice yield by simriw-rs, a model that integrates remote sensing data into a crop growth model
    • Maki, M.; Sekiguchi, K.; Homma, K.; Hirooka, Y.; Oki, K. Estimation of rice yield by simriw-rs, a model that integrates remote sensing data into a crop growth model. J. Agric. Meteorol. 2017, 73, 2–8. [CrossRef]
    • (2017) J. Agric. Meteorol. , vol.73 , pp. 2-8
    • Maki, M.1    Sekiguchi, K.2    Homma, K.3    Hirooka, Y.4    Oki, K.5
  • 101
    • 0024190007 scopus 로고
    • Use of remotely-sensed information in agricultural crop growth models
    • Maas, S.J. Use of remotely-sensed information in agricultural crop growth models. Ecol. Model. 1988, 41, 247–268. [CrossRef]
    • (1988) Ecol. Model. , vol.41 , pp. 247-268
    • Maas, S.J.1
  • 102
    • 84921032817 scopus 로고    scopus 로고
    • Application of crop model data assimilation with a particle filter for estimating regional winter wheat yields
    • Jiang, Z.; Chen, Z.; Chen, J.; Liu, J.; Ren, J.; Li, Z.; Sun, L.; Li, H. Application of crop model data assimilation with a particle filter for estimating regional winter wheat yields. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 2014, 7, 4422–4431. [CrossRef]
    • (2014) IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. , vol.7 , pp. 4422-4431
    • Jiang, Z.1    Chen, Z.2    Chen, J.3    Liu, J.4    Ren, J.5    Li, Z.6    Sun, L.7    Li, H.8
  • 103
    • 66949174594 scopus 로고    scopus 로고
    • Water productivity at different geographical scales in zhanghe irrigation district, China
    • Chemin, Y.; Alexandridis, T. Water productivity at different geographical scales in zhanghe irrigation district, China. Int. J. Geoinf. 2006, 2, 9–19.
    • (2006) Int. J. Geoinf. , vol.2 , pp. 9-19
    • Chemin, Y.1    Alexandridis, T.2
  • 104
    • 46349091158 scopus 로고    scopus 로고
    • An estimation of the optimum temporal resolution for monitoring vegetation condition on a nationwide scale using MODIS/terra data
    • Alexandridis, T.K.; Gitas, I.Z.; Silleos, N.G. An estimation of the optimum temporal resolution for monitoring vegetation condition on a nationwide scale using MODIS/terra data. Int. J. Remote Sens. 2008, 29, 3589–3607. [CrossRef]
    • (2008) Int. J. Remote Sens. , vol.29 , pp. 3589-3607
    • Alexandridis, T.K.1    Gitas, I.Z.2    Silleos, N.G.3
  • 106
    • 85030323096 scopus 로고    scopus 로고
    • Advances in remote sensing applications for urban sustainability
    • Kadhim, N.; Mourshed, M.; Bray, M. Advances in remote sensing applications for urban sustainability. Euro-Mediterr. J. Environ. Integr. 2016, 1, 7. [CrossRef]
    • (2016) Euro-Mediterr. J. Environ. Integr. , vol.1 , pp. 7
    • Kadhim, N.1    Mourshed, M.2    Bray, M.3
  • 107
    • 77949783485 scopus 로고    scopus 로고
    • Assimilating leaf area index estimates from remote sensing into the simulations of a cropping systems model
    • Thorp, K.R.; Hunsaker, D.J.; French, A.N. Assimilating leaf area index estimates from remote sensing into the simulations of a cropping systems model. Trans. ASABE 2010, 53, 251–262. [CrossRef]
    • (2010) Trans. ASABE , vol.53 , pp. 251-262
    • Thorp, K.R.1    Hunsaker, D.J.2    French, A.N.3
  • 108
    • 14844292684 scopus 로고    scopus 로고
    • Integrating remotely sensed images with a soybean model to improve spatial yield simulation
    • Seidl, M.S.; Batchelor, W.D.; Paz, J.O. Integrating remotely sensed images with a soybean model to improve spatial yield simulation. Trans. ASAE 2004, 47, 2081. [CrossRef]
    • (2004) Trans. ASAE , vol.47 , pp. 2081
    • Seidl, M.S.1    Batchelor, W.D.2    Paz, J.O.3
  • 109
    • 85011321611 scopus 로고    scopus 로고
    • Towards fine resolution global maps of crop yields: Testing multiple methods and satellites in three countries
    • Azzari, G.; Jain, M.; Lobell, D.B. Towards fine resolution global maps of crop yields: Testing multiple methods and satellites in three countries. Remote Sens. Environ. 2017, 202, 129–141. [CrossRef]
    • (2017) Remote Sens. Environ. , vol.202 , pp. 129-141
    • Azzari, G.1    Jain, M.2    Lobell, D.B.3
  • 110
    • 0035047573 scopus 로고    scopus 로고
    • Spatial validation of crop models for precision agriculture
    • Basso, B.; Ritchie, J.T.; Pierce, F.J.; Braga, R.P.; Jones, J.W. Spatial validation of crop models for precision agriculture. Agric. Syst. 2001, 68, 97–112. [CrossRef]
    • (2001) Agric. Syst. , vol.68 , pp. 97-112
    • Basso, B.1    Ritchie, J.T.2    Pierce, F.J.3    Braga, R.P.4    Jones, J.W.5
  • 111
    • 85010792399 scopus 로고    scopus 로고
    • Integrating remote sensing information with crop model to monitor wheat growth and yield based on simulation zone partitioning
    • Guo, C.; Zhang, L.; Zhou, X.; Zhu, Y.; Cao, W.; Qiu, X.; Cheng, T.; Tian, Y. Integrating remote sensing information with crop model to monitor wheat growth and yield based on simulation zone partitioning. Precis. Agric. 2018, 19, 55–78. [CrossRef]
    • (2018) Precis. Agric. , vol.19 , pp. 55-78
    • Guo, C.1    Zhang, L.2    Zhou, X.3    Zhu, Y.4    Cao, W.5    Qiu, X.6    Cheng, T.7    Tian, Y.8
  • 112
    • 85002644909 scopus 로고    scopus 로고
    • Estimation of winter wheat biomass and yield by combining the aquacrop model and field hyperspectral data
    • Jin, X.; Kumar, L.; Li, Z.; Xu, X.; Yang, G.; Wang, J. Estimation of winter wheat biomass and yield by combining the aquacrop model and field hyperspectral data. Remote Sens. 2016, 8, 972. [CrossRef]
    • (2016) Remote Sens , vol.8 , pp. 972
    • Jin, X.1    Kumar, L.2    Li, Z.3    Xu, X.4    Yang, G.5    Wang, J.6
  • 113
    • 84877678838 scopus 로고    scopus 로고
    • Using low resolution satellite imagery for yield prediction and yield anomaly detection
    • Rembold, F.; Atzberger, C.; Savin, I.; Rojas, O. Using low resolution satellite imagery for yield prediction and yield anomaly detection. Remote Sens. 2013, 5, 1704–1733. [CrossRef]
    • (2013) Remote Sens , vol.5 , pp. 1704-1733
    • Rembold, F.1    Atzberger, C.2    Savin, I.3    Rojas, O.4
  • 114
    • 0029666683 scopus 로고    scopus 로고
    • Combined use of optical and microwave remote sensing data for crop growth monitoring
    • Clevers, J.G.P.W.; van Leeuwen, H.J.C. Combined use of optical and microwave remote sensing data for crop growth monitoring. Remote Sens. Environ. 1996, 56, 42–51. [CrossRef]
    • (1996) Remote Sens. Environ. , vol.56 , pp. 42-51
    • Clevers, J.G.P.W.1    Van Leeuwen, H.J.C.2
  • 116
    • 84904756869 scopus 로고    scopus 로고
    • Remote sensing of terrestrial chlorophyll fluorescence from space
    • Frankenberg, C.; Berry, J.; Guanter, L.; Joiner, J. Remote sensing of terrestrial chlorophyll fluorescence from space. SPIE Newsroom 2013, 2–5. [CrossRef]
    • (2013) SPIE Newsroom , pp. 2-5
    • Frankenberg, C.1    Berry, J.2    Guanter, L.3    Joiner, J.4
  • 125
    • 84924528344 scopus 로고    scopus 로고
    • Crop yield response to climate change varies with cropping intensity
    • CrossRef PubMed
    • Challinor, A.J.; Parkes, B.; Ramirez-Villegas, J. Crop yield response to climate change varies with cropping intensity. Glob. Chang. Biol. 2015, 21, 1679–1688. [CrossRef] [PubMed]
    • (2015) Glob. Chang. Biol. , vol.21 , pp. 1679-1688
    • Challinor, A.J.1    Parkes, B.2    Ramirez-Villegas, J.3
  • 126
    • 84939454114 scopus 로고    scopus 로고
    • Combining UAV-based plant height from crop surface models, visible, and near infrared vegetation indices for biomass monitoring in barley
    • Bendig, J.; Yu, K.; Aasen, H.; Bolten, A.; Bennertz, S.; Broscheit, J.; Gnyp, M.L.; Bareth, G. Combining UAV-based plant height from crop surface models, visible, and near infrared vegetation indices for biomass monitoring in barley. Int. J. Appl. Earth Observ. Geoinf. 2015, 39, 79–87. [CrossRef]
    • (2015) Int. J. Appl. Earth Observ. Geoinf. , vol.39 , pp. 79-87
    • Bendig, J.1    Yu, K.2    Aasen, H.3    Bolten, A.4    Bennertz, S.5    Broscheit, J.6    Gnyp, M.L.7    Bareth, G.8


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.