메뉴 건너뛰기




Volumn 9, Issue 11, 2017, Pages

Hyperspectral imaging: A review on UAV-based sensors, data processing and applications for agriculture and forestry

Author keywords

Agriculture; Agroforestry; Forestry; Hyperspectral; Hyperspectral data processing; Hyperspectral sensors; UAS; UAV

Indexed keywords

AGRICULTURE; COST EFFECTIVENESS; CROPS; DATA HANDLING; FIGHTER AIRCRAFT; FORESTRY; REMOTE SENSING; SPECTROSCOPIC ANALYSIS; SPECTROSCOPY; TIMBER; UNMANNED AERIAL VEHICLES (UAV);

EID: 85034756154     PISSN: None     EISSN: 20724292     Source Type: Journal    
DOI: 10.3390/rs9111110     Document Type: Article
Times cited : (875)

References (149)
  • 1
    • 85014622104 scopus 로고    scopus 로고
    • UAS, sensors, and data processing in agroforestry: A review towards practical applications
    • Pádua, L.; Vanko, J.; Hruška, J.; Adão, T.; Sousa, J.J.; Peres, E.; Morais, R. UAS, sensors, and data processing in agroforestry: A review towards practical applications. Int. J. Remote Sens. 2017, 38, 2349-2391
    • (2017) Int. J. Remote Sens , vol.38 , pp. 2349-2391
    • Pádua, L.1    Vanko, J.2    Hruška, J.3    Adão, T.4    Sousa, J.J.5    Peres, E.6    Morais, R.7
  • 4
    • 84939454114 scopus 로고    scopus 로고
    • Combining UAV-based plant height from crop surface models, visible, and near infrared vegetation indices for biomass monitoring in barley
    • Bendig, J.; Yu, K.; Aasen, H.; Bolten, A.; Bennertz, S.; Broscheit, J.; Gnyp, M.L.; Bareth, G. Combining UAV-based plant height from crop surface models, visible, and near infrared vegetation indices for biomass monitoring in barley. Int. J. Appl. Earth Obs. Geoinf. 2015, 39, 79-87
    • (2015) Int. J. Appl. Earth Obs. Geoinf , vol.39 , pp. 79-87
    • Bendig, J.1    Yu, K.2    Aasen, H.3    Bolten, A.4    Bennertz, S.5    Broscheit, J.6    Gnyp, M.L.7    Bareth, G.8
  • 5
    • 84930019319 scopus 로고    scopus 로고
    • Early Detection and Quantification of VerticilliumWilt in Olive Using Hyperspectral and Thermal Imagery over Large Areas
    • Calderón, R.; Navas-Cortés, J.A.; Zarco-Tejada, P.J. Early Detection and Quantification of VerticilliumWilt in Olive Using Hyperspectral and Thermal Imagery over Large Areas. Remote Sens. 2015, 7, 5584-5610
    • (2015) Remote Sens , vol.7 , pp. 5584-5610
    • Calderón, R.1    Navas-Cortés, J.A.2    Zarco-Tejada, P.J.3
  • 6
    • 84863859442 scopus 로고    scopus 로고
    • Assessing biodiversity in forests using very high-resolution images and unmanned aerial vehicles
    • Getzin, S.; Wiegand, K.; Schöning, I. Assessing biodiversity in forests using very high-resolution images and unmanned aerial vehicles. Methods Ecol. Evol. 2012, 3, 397-404
    • (2012) Methods Ecol. Evol , vol.3 , pp. 397-404
    • Getzin, S.1    Wiegand, K.2    Schöning, I.3
  • 8
    • 84959371528 scopus 로고    scopus 로고
    • Uav-Borne Thermal Imaging for Forest Health Monitoring: Detection of Disease-Induced Canopy Temperature Increase
    • Smigaj, M.; Gaulton, R.; Barr, S.L.; Suárez, J.C. Uav-Borne Thermal Imaging for Forest Health Monitoring: Detection of Disease-Induced Canopy Temperature Increase. ISPRS Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2015, XL-3/W3, 349-354
    • (2015) ISPRS Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci , vol.40 , Issue.3 W3 , pp. 349-354
    • Smigaj, M.1    Gaulton, R.2    Barr, S.L.3    Suárez, J.C.4
  • 11
    • 84877757536 scopus 로고    scopus 로고
    • Hyperspectral and multispectral imaging for evaluating food safety and quality
    • Qin, J.; Chao, K.; Kim, M.S.; Lu, R.; Burks, T.F. Hyperspectral and multispectral imaging for evaluating food safety and quality. J. Food Eng. 2013, 118, 157-171
    • (2013) J. Food Eng , vol.118 , pp. 157-171
    • Qin, J.1    Chao, K.2    Kim, M.S.3    Lu, R.4    Burks, T.F.5
  • 14
    • 85034775905 scopus 로고    scopus 로고
    • accessed on 15 September 2017
    • Multispectral vs. Hyperspectral Imagery Explained. Available online: http://gisgeography.com/multispectral-vs-hyperspectral-imagery-explained/(accessed on 15 September 2017)
    • Multispectral vs. Hyperspectral Imagery Explained
  • 15
    • 84974593878 scopus 로고    scopus 로고
    • Workflow for Building A Hyperspectral Uav: Challenges And Opportunities
    • Proctor, C.; He, Y. Workflow for Building A Hyperspectral Uav: Challenges And Opportunities. ISPRS Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2015, XL-1/W4, 415-419
    • (2015) ISPRS Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci , vol.40 , Issue.1 W4 , pp. 415-419
    • Proctor, C.1    He, Y.2
  • 16
    • 17644371466 scopus 로고    scopus 로고
    • Hyperspectral image processing for automatic target detection applications
    • Manolakis, D.; Marden, D.; Shaw, G.A. Hyperspectral image processing for automatic target detection applications. Linc. Lab. J. 2003, 14, 79-116
    • (2003) Linc. Lab. J , vol.14 , pp. 79-116
    • Manolakis, D.1    Marden, D.2    Shaw, G.A.3
  • 17
    • 85034785768 scopus 로고    scopus 로고
    • accessed on 9 October 2017
    • AVIRIS-Airborne Visible/Infrared Imaging Spectrometer-Imaging Spectroscopy. Available online: https://aviris.jpl.nasa.gov/aviris/imaging_spectroscopy.html (accessed on 9 October 2017)
  • 18
    • 84982689621 scopus 로고    scopus 로고
    • Indian Agricultural Statistics Research Institute: New Delhi, India
    • Sahoo, R. Hyperspectral Remote Sensing (Sahoo's Report); Indian Agricultural Statistics Research Institute: New Delhi, India, 2013; pp. 848-859
    • (2013) Hyperspectral Remote Sensing (Sahoo's Report) , pp. 848-859
    • Sahoo, R.1
  • 19
    • 67650234021 scopus 로고    scopus 로고
    • Three decades of hyperspectral remote sensing of the Earth: A personal view
    • Goetz, A.F. H. Three decades of hyperspectral remote sensing of the Earth: A personal view. Remote Sens. Environ. 2009, 113, S5-S16
    • (2009) Remote Sens. Environ , vol.113 , pp. S5-S16
    • Goetz, A.F.H.1
  • 20
    • 0033381257 scopus 로고    scopus 로고
    • Remote sensing for mineral exploration
    • Sabins, F.F. Remote sensing for mineral exploration. Ore Geol. Rev. 1999, 14, 157-183
    • (1999) Ore Geol. Rev , vol.14 , pp. 157-183
    • Sabins, F.F.1
  • 21
    • 10844285618 scopus 로고    scopus 로고
    • A review of satellite and airborne sensors for remote sensing based detection of minefields and landmines
    • Maathuis, B.H.P.; van Genderen, J.L. A review of satellite and airborne sensors for remote sensing based detection of minefields and landmines. Int. J. Remote Sens. 2004, 25, 5201-5245
    • (2004) Int. J. Remote Sens , vol.25 , pp. 5201-5245
    • Maathuis, B.H.P.1    van Genderen, J.L.2
  • 25
    • 84887105216 scopus 로고    scopus 로고
    • Twenty five years of remote sensing in precision agriculture: Key advances and remaining knowledge gaps
    • Mulla, D.J. Twenty five years of remote sensing in precision agriculture: Key advances and remaining knowledge gaps. Biosyst. Eng. 2013, 114, 358-371
    • (2013) Biosyst. Eng , vol.114 , pp. 358-371
    • Mulla, D.J.1
  • 26
    • 0041732265 scopus 로고    scopus 로고
    • Preprocessing EO-1 Hyperion hyperspectral data to support the application of agricultural indexes
    • Datt, B.; McVicar, T.R.; Niel, T.G.V.; Jupp, D.L.B.; Pearlman, J.S. Preprocessing EO-1 Hyperion hyperspectral data to support the application of agricultural indexes. IEEE Trans. Geosci. Remote Sens. 2003, 41, 1246-1259
    • (2003) IEEE Trans. Geosci. Remote Sens , vol.41 , pp. 1246-1259
    • Datt, B.1    McVicar, T.R.2    Niel, T.G.V.3    Jupp, D.L.B.4    Pearlman, J.S.5
  • 27
    • 84992418378 scopus 로고    scopus 로고
    • Spatial variability of chlorophyll and nitrogen content of rice from hyperspectral imagery
    • Moharana, S.; Dutta, S. Spatial variability of chlorophyll and nitrogen content of rice from hyperspectral imagery. ISPRS J. Photogramm. Remote Sens. 2016, 122, 17-29
    • (2016) ISPRS J. Photogramm. Remote Sens , vol.122 , pp. 17-29
    • Moharana, S.1    Dutta, S.2
  • 28
    • 84975453750 scopus 로고    scopus 로고
    • Mapping of land cover in northern California with simulated hyperspectral satellite imagery
    • Clark, M.L.; Kilham, N.E. Mapping of land cover in northern California with simulated hyperspectral satellite imagery. ISPRS J. Photogramm. Remote Sens. 2016, 119, 228-245
    • (2016) ISPRS J. Photogramm. Remote Sens , vol.119 , pp. 228-245
    • Clark, M.L.1    Kilham, N.E.2
  • 29
    • 0036856743 scopus 로고    scopus 로고
    • Precision agriculture-A worldwide overview
    • Zhang, N.; Wang, M.; Wang, N. Precision agriculture-A worldwide overview. Comput. Electron. Agric. 2002, 36, 113-132
    • (2002) Comput. Electron. Agric , vol.36 , pp. 113-132
    • Zhang, N.1    Wang, M.2    Wang, N.3
  • 31
    • 85034765079 scopus 로고    scopus 로고
    • accessed on 19 April 2017
    • WorldView-3 WorldView-3 Satellite Sensor|Satellite Imaging Corp. Available online: http://www. satimagingcorp.com/satellite-sensors/worldview-3/(accessed on 19 April 2017)
  • 32
    • 85034744121 scopus 로고    scopus 로고
    • accessed on 19 April 2017
    • ESA Spatial-Resolutions-Sentinel-2 MSI-User Guides-Sentinel Online. Available online: https://earth.esa. int/web/sentinel/user-guides/sentinel-2-msi/resolutions/spatial (accessed on 19 April 2017)
  • 33
    • 85034744359 scopus 로고    scopus 로고
    • accessed on 1 August 2017
    • AVIRIS-Airborne Visible/Infrared Imaging Spectrometer. Available online: https://aviris.jpl.nasa.gov/(accessed on 1 August 2017)
  • 34
    • 84973493588 scopus 로고    scopus 로고
    • Overview and Current Status of Remote Sensing Applications Based on Unmanned Aerial Vehicles (UAVs)
    • Pajares, G. Overview and Current Status of Remote Sensing Applications Based on Unmanned Aerial Vehicles (UAVs). Photogramm. Eng. Remote Sens. 2015, 81, 281-329
    • (2015) Photogramm. Eng. Remote Sens , vol.81 , pp. 281-329
    • Pajares, G.1
  • 37
    • 85034746649 scopus 로고    scopus 로고
    • accessed on 1 September 2017
    • Pappalardo, J. Unmanned Aircraft "Roadmap" Reflects Changing Priorities. Available online: http://www.nationaldefensemagazine.org/articles/2005/3/31/2005april-unmanned-aircraft-roadmapreflects-changing-priorities (accessed on 1 September 2017)
    • Unmanned Aircraft "Roadmap" Reflects Changing Priorities
    • Pappalardo, J.1
  • 38
    • 84897562134 scopus 로고    scopus 로고
    • Unmanned aerial systems for photogrammetry and remote sensing: A review
    • Colomina, I.; Molina, P. Unmanned aerial systems for photogrammetry and remote sensing: A review. ISPRS J. Photogramm. Remote Sens. 2014, 92, 79-97
    • (2014) ISPRS J. Photogramm. Remote Sens , vol.92 , pp. 79-97
    • Colomina, I.1    Molina, P.2
  • 39
    • 77950942373 scopus 로고    scopus 로고
    • Plant Disease Severity Estimated Visually, by Digital Photography and Image Analysis, and by Hyperspectral Imaging
    • Bock, C.H.; Poole, G.H.; Parker, P.E.; Gottwald, T.R. Plant Disease Severity Estimated Visually, by Digital Photography and Image Analysis, and by Hyperspectral Imaging. Crit. Rev. Plant Sci. 2010, 29, 59-107
    • (2010) Crit. Rev. Plant Sci , vol.29 , pp. 59-107
    • Bock, C.H.1    Poole, G.H.2    Parker, P.E.3    Gottwald, T.R.4
  • 40
    • 84874253202 scopus 로고    scopus 로고
    • Estimating leaf carotenoid content in vineyards using high resolution hyperspectral imagery acquired from an unmanned aerial vehicle (UAV)
    • Zarco-Tejada, P.J.; Guillén-Climent, M.L.; Hernández-Clemente, R.; Catalina, A.; González, M.R.; Martín, P. Estimating leaf carotenoid content in vineyards using high resolution hyperspectral imagery acquired from an unmanned aerial vehicle (UAV). Agric. For. Meteorol. 2013, 171-172, 281-294
    • (2013) Agric. For. Meteorol , vol.171-172 , pp. 281-294
    • Zarco-Tejada, P.J.1    Guillén-Climent, M.L.2    Hernández-Clemente, R.3    Catalina, A.4    González, M.R.5    Martín, P.6
  • 41
    • 84864527574 scopus 로고    scopus 로고
    • Multitemporal analysis of hydrological soil surface characteristics using aerial photos: A case study on a Mediterranean vineyard
    • Corbane, C.; Jacob, F.; Raclot, D.; Albergel, J.; Andrieux, P. Multitemporal analysis of hydrological soil surface characteristics using aerial photos: A case study on a Mediterranean vineyard. Int. J. Appl. Earth Obs. Geoinf. 2012, 18, 356-367
    • (2012) Int. J. Appl. Earth Obs. Geoinf , vol.18 , pp. 356-367
    • Corbane, C.1    Jacob, F.2    Raclot, D.3    Albergel, J.4    Andrieux, P.5
  • 42
    • 84878718359 scopus 로고    scopus 로고
    • Relationships between net photosynthesis and steady-state chlorophyll fluorescence retrieved from airborne hyperspectral imagery
    • Zarco-Tejada, P.J.; Catalina, A.; González, M.R.; Martín, P. Relationships between net photosynthesis and steady-state chlorophyll fluorescence retrieved from airborne hyperspectral imagery. Remote Sens. Environ. 2013, 136, 247-258
    • (2013) Remote Sens. Environ , vol.136 , pp. 247-258
    • Zarco-Tejada, P.J.1    Catalina, A.2    González, M.R.3    Martín, P.4
  • 43
    • 84880077168 scopus 로고    scopus 로고
    • Advanced applications of hyperspectral imaging technology for food quality and safety analysis and assessment: A review-Part I: Fundamentals
    • Wu, D.; Sun, D.-W. Advanced applications of hyperspectral imaging technology for food quality and safety analysis and assessment: A review-Part I: Fundamentals. Innov. Food Sci. Emerg. Technol. 2013, 19, 1-14
    • (2013) Innov. Food Sci. Emerg. Technol , vol.19 , pp. 1-14
    • Wu, D.1    Sun, D.-W.2
  • 44
    • 14544291010 scopus 로고    scopus 로고
    • Classification of imaging spectrometers for remote sensing applications
    • Sellar, R.G.; Boreman, G.D. Classification of imaging spectrometers for remote sensing applications. Opt. Eng. 2005, 44, 13602
    • (2005) Opt. Eng , vol.44 , pp. 13602
    • Sellar, R.G.1    Boreman, G.D.2
  • 46
    • 84885455739 scopus 로고    scopus 로고
    • Review of snapshot spectral imaging technologies
    • Hagen, N.; Kudenov, M.W. Review of snapshot spectral imaging technologies. Opt. Eng. 2013, 52, 090901
    • (2013) Opt. Eng , vol.52
    • Hagen, N.1    Kudenov, M.W.2
  • 47
    • 84981297997 scopus 로고    scopus 로고
    • Development of a Low-Cost Hyperspectral Whiskbroom Imager Using an Optical Fiber Bundle, a Swing Mirror, and Compact Spectrometers
    • Uto, K.; Seki, H.; Saito, G.; Kosugi, Y.; Komatsu, T. Development of a Low-Cost Hyperspectral Whiskbroom Imager Using an Optical Fiber Bundle, a Swing Mirror, and Compact Spectrometers. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2016, 9, 3909-3925
    • (2016) IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens , vol.9 , pp. 3909-3925
    • Uto, K.1    Seki, H.2    Saito, G.3    Kosugi, Y.4    Komatsu, T.5
  • 48
    • 84913575682 scopus 로고    scopus 로고
    • Compressive pushbroom and whiskbroom sensing for hyperspectral remote-sensing imaging
    • Paris, France, 27-30 October
    • Fowler, J.E. Compressive pushbroom and whiskbroom sensing for hyperspectral remote-sensing imaging. In Proceedings of the 2014 IEEE International Conference on Image Processing, Paris, France, 27-30 October 2014; pp. 684-688
    • (2014) Proceedings of the 2014 IEEE International Conference on Image Processing , pp. 684-688
    • Fowler, J.E.1
  • 49
    • 84902287000 scopus 로고    scopus 로고
    • HyperUAS-Imaging Spectroscopy from a Multirotor Unmanned Aircraft System: HyperUAS-Imaging Spectroscopy from a Multirotor Unmanned
    • Lucieer, A.; Malenovský, Z.; Veness, T.; Wallace, L. HyperUAS-Imaging Spectroscopy from a Multirotor Unmanned Aircraft System: HyperUAS-Imaging Spectroscopy from a Multirotor Unmanned. J. Field Robot. 2014, 31, 571-590
    • (2014) J. Field Robot , vol.31 , pp. 571-590
    • Lucieer, A.1    Malenovský, Z.2    Veness, T.3    Wallace, L.4
  • 50
    • 84877928191 scopus 로고    scopus 로고
    • Characterization of Rice Paddies by a UAV-Mounted Miniature Hyperspectral Sensor System
    • Uto, K.; Seki, H.; Saito, G.; Kosugi, Y. Characterization of Rice Paddies by a UAV-Mounted Miniature Hyperspectral Sensor System. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2013, 6, 851-860
    • (2013) IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens , vol.6 , pp. 851-860
    • Uto, K.1    Seki, H.2    Saito, G.3    Kosugi, Y.4
  • 51
    • 84941356382 scopus 로고    scopus 로고
    • Development of a Low-Cost, Lightweight Hyperspectral Imaging System Based on a Polygon Mirror and Compact Spectrometers
    • Uto, K.; Seki, H.; Saito, G.; Kosugi, Y.; Komatsu, T. Development of a Low-Cost, Lightweight Hyperspectral Imaging System Based on a Polygon Mirror and Compact Spectrometers. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2016, 9, 861-875
    • (2016) IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens , vol.9 , pp. 861-875
    • Uto, K.1    Seki, H.2    Saito, G.3    Kosugi, Y.4    Komatsu, T.5
  • 52
    • 84894456662 scopus 로고    scopus 로고
    • Fabry-Pérot-multichannel spectrometer tandem for ultra-high resolution Raman spectroscopy
    • Rozas, G.; Jusserand, B.; Fainstein, A. Fabry-Pérot-multichannel spectrometer tandem for ultra-high resolution Raman spectroscopy. Rev. Sci. Instrum. 2014, 85, 13103
    • (2014) Rev. Sci. Instrum , vol.85 , pp. 13103
    • Rozas, G.1    Jusserand, B.2    Fainstein, A.3
  • 55
    • 84959092786 scopus 로고    scopus 로고
    • Improving Orthorectification of UAV-Based Push-Broom Scanner Imagery Using Derived Orthophotos From Frame Cameras
    • Habib, A.; Xiong, W.; He, F.; Yang, H.L.; Crawford, M. Improving Orthorectification of UAV-Based Push-Broom Scanner Imagery Using Derived Orthophotos From Frame Cameras. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2017, 10, 262-276
    • (2017) IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens , vol.10 , pp. 262-276
    • Habib, A.1    Xiong, W.2    He, F.3    Yang, H.L.4    Crawford, M.5
  • 56
    • 85034779005 scopus 로고    scopus 로고
    • accessed on 2 April 2017
    • Photonics, Headwall VNIR. Available online: http://www.headwallphotonics.com/spectral-imaging/hyperspectral/vnir (accessed on 2 April 2017)
  • 57
    • 84878953571 scopus 로고    scopus 로고
    • Land Surface Reflectance Retrieval from Hyperspectral Data Collected by an Unmanned Aerial Vehicle over the Baotou Test Site
    • Duan, S.-B.; Li, Z.-L.; Tang, B.-H.;Wu, H.; Ma, L.; Zhao, E.; Li, C. Land Surface Reflectance Retrieval from Hyperspectral Data Collected by an Unmanned Aerial Vehicle over the Baotou Test Site. PLoS ONE 2013, 8, e66972
    • (2013) PLoS ONE , vol.8
    • Duan, S.-B.1    Li, Z.-L.2    Tang, B.-H.3    Wu, H.4    Ma, L.5    Zhao, E.6    Li, C.7
  • 58
    • 85010676775 scopus 로고    scopus 로고
    • The Need for Accurate Geometric and Radiometric Corrections of Drone-Borne Hyperspectral Data for Mineral Exploration: MEPHySTo-A Toolbox for Pre-Processing Drone-Borne Hyperspectral Data
    • Jakob, S.; Zimmermann, R.; Gloaguen, R. The Need for Accurate Geometric and Radiometric Corrections of Drone-Borne Hyperspectral Data for Mineral Exploration: MEPHySTo-A Toolbox for Pre-Processing Drone-Borne Hyperspectral Data. Remote Sens. 2017, 9, 88
    • (2017) Remote Sens , vol.9 , pp. 88
    • Jakob, S.1    Zimmermann, R.2    Gloaguen, R.3
  • 59
    • 84870717321 scopus 로고    scopus 로고
    • Radiometric and Geometric Analysis of Hyperspectral Imagery Acquired from an Unmanned Aerial Vehicle
    • Hruska, R.; Mitchell, J.; Anderson, M.; Glenn, N.F. Radiometric and Geometric Analysis of Hyperspectral Imagery Acquired from an Unmanned Aerial Vehicle. Remote Sens. 2012, 4, 2736-2752
    • (2012) Remote Sens , vol.4 , pp. 2736-2752
    • Hruska, R.1    Mitchell, J.2    Anderson, M.3    Glenn, N.F.4
  • 61
    • 79955636198 scopus 로고    scopus 로고
    • Operational Atmospheric Correction for Imaging Spectrometers Accounting for the Smile Effect
    • Richter, R.; Schlapfer, D.; Muller, A. Operational Atmospheric Correction for Imaging Spectrometers Accounting for the Smile Effect. IEEE Trans. Geosci. Remote Sens. 2011, 49, 1772-1780
    • (2011) IEEE Trans. Geosci. Remote Sens , vol.49 , pp. 1772-1780
    • Richter, R.1    Schlapfer, D.2    Muller, A.3
  • 63
    • 84870418950 scopus 로고    scopus 로고
    • Enhancing Spatial Resolution of Hyperspectral Imagery Using Sensor's Intrinsic Keystone Distortion
    • Qian, S.E.; Chen, G. Enhancing Spatial Resolution of Hyperspectral Imagery Using Sensor's Intrinsic Keystone Distortion. IEEE Trans. Geosci. Remote Sens. 2012, 50, 5033-5048
    • (2012) IEEE Trans. Geosci. Remote Sens , vol.50 , pp. 5033-5048
    • Qian, S.E.1    Chen, G.2
  • 65
    • 84961619721 scopus 로고    scopus 로고
    • Preprocessing and compression of Hyperspectral images captured onboard UAVs
    • Unmanned/Unattended Sensors and Sensor Networks XI; and Advanced Free-Space Optical Communication Techniques and Applications, Toulouse, France, 13 October
    • Herrero, R.; Cadirola, M.; Ingle, V.K. Preprocessing and compression of Hyperspectral images captured onboard UAVs. In Proceedings of the SPIE 9647, Unmanned/Unattended Sensors and Sensor Networks XI; and Advanced Free-Space Optical Communication Techniques and Applications, Toulouse, France, 13 October 2015; p. 964705
    • (2015) Proceedings of the SPIE 9647
    • Herrero, R.1    Cadirola, M.2    Ingle, V.K.3
  • 66
    • 79960151553 scopus 로고    scopus 로고
    • Data handling in hyperspectral image analysis
    • Burger, J.; Gowen, A. Data handling in hyperspectral image analysis. Chemom. Intell. Lab. Syst. 2011, 108, 13-22
    • (2011) Chemom. Intell. Lab. Syst , vol.108 , pp. 13-22
    • Burger, J.1    Gowen, A.2
  • 67
    • 85032751896 scopus 로고    scopus 로고
    • Hyperspectral image data analysis
    • Landgrebe, D. Hyperspectral image data analysis. IEEE Signal Process. Mag. 2002, 19, 17-28
    • (2002) IEEE Signal Process. Mag , vol.19 , pp. 17-28
    • Landgrebe, D.1
  • 68
    • 33748659693 scopus 로고    scopus 로고
    • Hyperspectral image analysis using noise-adjusted principal component transform
    • Hyperspectral, and Ultraspectral Imagery XII, Orlando, FL, USA, 4 May
    • Du, Q.; Raksuntorn, N. Hyperspectral image analysis using noise-adjusted principal component transform. In Proceedings of the SPIE Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery XII, Orlando, FL, USA, 4 May 2006
    • (2006) Proceedings of the SPIE Algorithms and Technologies for Multispectral
    • Du, Q.1    Raksuntorn, N.2
  • 69
    • 0038444885 scopus 로고    scopus 로고
    • Comparison of principal components analysis and minimum noise fraction transformation for reducing the dimensionality of hyperspectral imagery
    • Chen, C. Comparison of principal components analysis and minimum noise fraction transformation for reducing the dimensionality of hyperspectral imagery. Geogr. Res. 2000, 163-178
    • (2000) Geogr. Res , pp. 163-178
    • Chen, C.1
  • 70
    • 85032752318 scopus 로고    scopus 로고
    • Hyperspectral Target Detection: An Overview of Current and Future Challenges
    • Nasrabadi, N.M. Hyperspectral Target Detection: An Overview of Current and Future Challenges. IEEE Signal Process. Mag. 2014, 31, 34-44
    • (2014) IEEE Signal Process. Mag , vol.31 , pp. 34-44
    • Nasrabadi, N.M.1
  • 71
    • 85032751277 scopus 로고    scopus 로고
    • Detection algorithms for hyperspectral imaging applications
    • Manolakis, D.; Shaw, G. Detection algorithms for hyperspectral imaging applications. IEEE Signal Process. Mag. 2002, 19, 29-43
    • (2002) IEEE Signal Process. Mag , vol.19 , pp. 29-43
    • Manolakis, D.1    Shaw, G.2
  • 73
    • 80052979778 scopus 로고    scopus 로고
    • Introduction to hyperspectral image analysis
    • Shippert, P. Introduction to hyperspectral image analysis. Online J. Space Commun. 2003, 3, 13
    • (2003) Online J. Space Commun , vol.3 , pp. 13
    • Shippert, P.1
  • 76
    • 0030085612 scopus 로고    scopus 로고
    • Derived PDF of maximum likelihood signal estimator which employs an estimated noise covariance
    • Richmond, C.D. Derived PDF of maximum likelihood signal estimator which employs an estimated noise covariance. IEEE Trans. Signal Process. 1996, 44, 305-315
    • (1996) IEEE Trans. Signal Process , vol.44 , pp. 305-315
    • Richmond, C.D.1
  • 79
    • 0025508756 scopus 로고
    • Adaptive multiple-band CFAR detection of an optical pattern with unknown spectral distribution
    • Reed, I.S.; Yu, X. Adaptive multiple-band CFAR detection of an optical pattern with unknown spectral distribution. IEEE Trans. Acoust. Speech Signal Process. 1990, 38, 1760-1770
    • (1990) IEEE Trans. Acoust. Speech Signal Process , vol.38 , pp. 1760-1770
    • Reed, I.S.1    Yu, X.2
  • 83
    • 0035392132 scopus 로고    scopus 로고
    • Hyperspectral subpixel target detection using the linear mixing model
    • Manolakis, D.; Siracusa, C.; Shaw, G. Hyperspectral subpixel target detection using the linear mixing model. IEEE Trans. Geosci. Remote Sens. 2001, 39, 1392-1409
    • (2001) IEEE Trans. Geosci. Remote Sens , vol.39 , pp. 1392-1409
    • Manolakis, D.1    Siracusa, C.2    Shaw, G.3
  • 84
    • 35948987265 scopus 로고    scopus 로고
    • A comparative study of linear and nonlinear anomaly detectors for hyperspectral imagery
    • Hyperspectral, and Ultraspectral Imagery XIII, Orlando, FL, USA, 9-13 April
    • Goldberg, H.; Nasrabadi, N.M. A comparative study of linear and nonlinear anomaly detectors for hyperspectral imagery. In Proceedings of the SPIE Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery XIII, Orlando, FL, USA, 9-13 April 2007; p. 656504
    • (2007) Proceedings of the SPIE Algorithms and Technologies for Multispectral
    • Goldberg, H.1    Nasrabadi, N.M.2
  • 85
    • 13144293109 scopus 로고    scopus 로고
    • Kernel RX-algorithm: A nonlinear anomaly detector for hyperspectral imagery
    • Kwon, H.; Nasrabadi, N.M. Kernel RX-algorithm: A nonlinear anomaly detector for hyperspectral imagery. IEEE Trans. Geosci. Remote Sens. 2005, 43, 388-397
    • (2005) IEEE Trans. Geosci. Remote Sens , vol.43 , pp. 388-397
    • Kwon, H.1    Nasrabadi, N.M.2
  • 86
    • 33746885881 scopus 로고    scopus 로고
    • A support vector method for anomaly detection in hyperspectral imagery
    • Banerjee, A.; Burlina, P.; Diehl, C. A support vector method for anomaly detection in hyperspectral imagery. IEEE Trans. Geosci. Remote Sens. 2006, 44, 2282-2291
    • (2006) IEEE Trans. Geosci. Remote Sens , vol.44 , pp. 2282-2291
    • Banerjee, A.1    Burlina, P.2    Diehl, C.3
  • 89
    • 0028467206 scopus 로고
    • Hyperspectral image classification and dimensionality reduction: An orthogonal subspace projection approach
    • Harsanyi, J.C.; Chang, C.I. Hyperspectral image classification and dimensionality reduction: An orthogonal subspace projection approach. IEEE Trans. Geosci. Remote Sens. 1994, 32, 779-785
    • (1994) IEEE Trans. Geosci. Remote Sens , vol.32 , pp. 779-785
    • Harsanyi, J.C.1    Chang, C.I.2
  • 91
    • 77950870473 scopus 로고    scopus 로고
    • Continuum fusion: A theory of inference, with applications to hyperspectral detection
    • Schaum, A. Continuum fusion: A theory of inference, with applications to hyperspectral detection. Opt. Express 2010, 18, 8171-8181
    • (2010) Opt. Express , vol.18 , pp. 8171-8181
    • Schaum, A.1
  • 92
    • 85032750872 scopus 로고    scopus 로고
    • Detection Algorithms in Hyperspectral Imaging Systems: An Overview of Practical Algorithms
    • Manolakis, D.; Truslow, E.; Pieper, M.; Cooley, T.; Brueggeman, M. Detection Algorithms in Hyperspectral Imaging Systems: An Overview of Practical Algorithms. IEEE Signal Process. Mag. 2014, 31, 24-33
    • (2014) IEEE Signal Process. Mag , vol.31 , pp. 24-33
    • Manolakis, D.1    Truslow, E.2    Pieper, M.3    Cooley, T.4    Brueggeman, M.5
  • 94
    • 84881192881 scopus 로고    scopus 로고
    • False alarm mitigation techniques for hyperspectral target detection
    • Security, and Sensing, Baltimore, MD, USA, 29 April-3 May
    • Pieper, M.L.; Manolakis, D.; Truslow, E.; Cooley, T.; Brueggeman, M. False alarm mitigation techniques for hyperspectral target detection. In Proceedings of the SPIE Defense, Security, and Sensing, Baltimore, MD, USA, 29 April-3 May 2013; p. 874304
    • (2013) Proceedings of the SPIE Defense
    • Pieper, M.L.1    Manolakis, D.2    Truslow, E.3    Cooley, T.4    Brueggeman, M.5
  • 95
    • 43449120158 scopus 로고    scopus 로고
    • Performance of Variable Selection Methods in Regression Using Variations of the Bayesian Information Criterion
    • Burr, T.; Fry, H.; McVey, B.; Sander, E.; Cavanaugh, J.; Neath, A. Performance of Variable Selection Methods in Regression Using Variations of the Bayesian Information Criterion. Commun. Stat. Simul. Comput. 2008, 37, 507-520
    • (2008) Commun. Stat. Simul. Comput , vol.37 , pp. 507-520
    • Burr, T.1    Fry, H.2    McVey, B.3    Sander, E.4    Cavanaugh, J.5    Neath, A.6
  • 96
    • 3843151477 scopus 로고    scopus 로고
    • Distance metrics and band selection in hyperspectral processing with applications to material identification and spectral libraries
    • Keshava, N. Distance metrics and band selection in hyperspectral processing with applications to material identification and spectral libraries. IEEE Trans. Geosci. Remote Sens. 2004, 42, 1552-1565
    • (2004) IEEE Trans. Geosci. Remote Sens , vol.42 , pp. 1552-1565
    • Keshava, N.1
  • 97
  • 98
    • 33846220041 scopus 로고    scopus 로고
    • A Comparative Analysis of Kernel Subspace Target Detectors for Hyperspectral Imagery
    • Kwon, H.; Nasrabadi, N.M. A Comparative Analysis of Kernel Subspace Target Detectors for Hyperspectral Imagery. EURASIP J. Adv. Signal Process. 2006, 2007, 29250
    • (2006) EURASIP J. Adv. Signal Process , vol.2007 , pp. 29250
    • Kwon, H.1    Nasrabadi, N.M.2
  • 103
    • 34249810956 scopus 로고    scopus 로고
    • Semisupervised Classification of Hyperspectral Images by SVMs Optimized in the Primal
    • Chi, M.; Bruzzone, L. Semisupervised Classification of Hyperspectral Images by SVMs Optimized in the Primal. IEEE Trans. Geosci. Remote Sens. 2007, 45, 1870-1880
    • (2007) IEEE Trans. Geosci. Remote Sens , vol.45 , pp. 1870-1880
    • Chi, M.1    Bruzzone, L.2
  • 104
    • 21444433029 scopus 로고    scopus 로고
    • Super-resolution land cover mapping using a Markov random field based approach
    • Kasetkasem, T.; Arora, M.K.; Varshney, P.K. Super-resolution land cover mapping using a Markov random field based approach. Remote Sens. Environ. 2005, 96, 302-314
    • (2005) Remote Sens. Environ , vol.96 , pp. 302-314
    • Kasetkasem, T.1    Arora, M.K.2    Varshney, P.K.3
  • 105
    • 0038731227 scopus 로고    scopus 로고
    • Learning with progressive transductive support vector machine
    • Chen, Y.; Wang, G.; Dong, S. Learning with progressive transductive support vector machine. Pattern Recognit. Lett. 2003, 24, 1845-1855
    • (2003) Pattern Recognit. Lett , vol.24 , pp. 1845-1855
    • Chen, Y.1    Wang, G.2    Dong, S.3
  • 107
    • 84999035133 scopus 로고    scopus 로고
    • A novel spectral-spatial co-training algorithm for the transductive classification of hyperspectral imagery data
    • Appice, A.; Guccione, P.; Malerba, D. A novel spectral-spatial co-training algorithm for the transductive classification of hyperspectral imagery data. Pattern Recognit. 2017, 63, 229-245
    • (2017) Pattern Recognit , vol.63 , pp. 229-245
    • Appice, A.1    Guccione, P.2    Malerba, D.3
  • 108
    • 61349199062 scopus 로고    scopus 로고
    • Classification of Hyperspectral Images with Regularized Linear Discriminant Analysis
    • Bandos, T.V.; Bruzzone, L.; Camps-Valls, G. Classification of Hyperspectral Images with Regularized Linear Discriminant Analysis. IEEE Trans. Geosci. Remote Sens. 2009, 47, 862-873
    • (2009) IEEE Trans. Geosci. Remote Sens , vol.47 , pp. 862-873
    • Bandos, T.V.1    Bruzzone, L.2    Camps-Valls, G.3
  • 110
    • 84872315679 scopus 로고    scopus 로고
    • Evaluation of Broadband and Narrowband Vegetation Indices for the Identification of Archaeological Crop Marks
    • Agapiou, A.; Hadjimitsis, D.G.; Alexakis, D.D. Evaluation of Broadband and Narrowband Vegetation Indices for the Identification of Archaeological Crop Marks. Remote Sens. 2012, 4, 3892-3919
    • (2012) Remote Sens , vol.4 , pp. 3892-3919
    • Agapiou, A.1    Hadjimitsis, D.G.2    Alexakis, D.D.3
  • 111
    • 76049128596 scopus 로고    scopus 로고
    • Monitoring canopy biophysical and biochemical parameters in ecosystem scale using satellite hyperspectral imagery: An application on a Phlomis fruticosa Mediterranean ecosystem using multiangular CHRIS/PROBA observations
    • Stagakis, S.; Markos, N.; Sykioti, O.; Kyparissis, A. Monitoring canopy biophysical and biochemical parameters in ecosystem scale using satellite hyperspectral imagery: An application on a Phlomis fruticosa Mediterranean ecosystem using multiangular CHRIS/PROBA observations. Remote Sens. Environ. 2010, 114, 977-994
    • (2010) Remote Sens. Environ , vol.114 , pp. 977-994
    • Stagakis, S.1    Markos, N.2    Sykioti, O.3    Kyparissis, A.4
  • 112
    • 1842431418 scopus 로고    scopus 로고
    • Hyperspectral vegetation indices and novel algorithms for predicting green LAI of crop canopies: Modeling and validation in the context of precision agriculture
    • Haboudane, D.; Miller, J.R.; Pattey, E.; Zarco-Tejada, P.J.; Strachan, I.B. Hyperspectral vegetation indices and novel algorithms for predicting green LAI of crop canopies: Modeling and validation in the context of precision agriculture. Remote Sens. Environ. 2004, 90, 337-352
    • (2004) Remote Sens. Environ , vol.90 , pp. 337-352
    • Haboudane, D.1    Miller, J.R.2    Pattey, E.3    Zarco-Tejada, P.J.4    Strachan, I.B.5
  • 113
    • 27644598352 scopus 로고    scopus 로고
    • Assessing vineyard condition with hyperspectral indices: Leaf and canopy reflectance simulation in a row-structured discontinuous canopy
    • Zarco-Tejada, P.; Berjon, A.; Lopezlozano, R.; Miller, J.; Martin, P.; Cachorro, V.; Gonzalez, M.; Defrutos, A. Assessing vineyard condition with hyperspectral indices: Leaf and canopy reflectance simulation in a row-structured discontinuous canopy. Remote Sens. Environ. 2005, 99, 271-287
    • (2005) Remote Sens. Environ , vol.99 , pp. 271-287
    • Zarco-Tejada, P.1    Berjon, A.2    Lopezlozano, R.3    Miller, J.4    Martin, P.5    Cachorro, V.6    Gonzalez, M.7    Defrutos, A.8
  • 115
    • 84977126748 scopus 로고    scopus 로고
    • Estimating crop chlorophyll content with hyperspectral vegetation indices and the hybrid inversion method
    • Liang, L.; Qin, Z.; Zhao, S.; Di, L.; Zhang, C.; Deng, M.; Lin, H.; Zhang, L.; Wang, L.; Liu, Z. Estimating crop chlorophyll content with hyperspectral vegetation indices and the hybrid inversion method. Int. J. Remote Sens. 2016, 37, 2923-2949
    • (2016) Int. J. Remote Sens , vol.37 , pp. 2923-2949
    • Liang, L.1    Qin, Z.2    Zhao, S.3    Di, L.4    Zhang, C.5    Deng, M.6    Lin, H.7    Zhang, L.8    Wang, L.9    Liu, Z.10
  • 117
    • 85021150926 scopus 로고    scopus 로고
    • Evaluating Hyperspectral Vegetation Indices for Leaf Area Index Estimation of Oryza sativa L. at Diverse Phenological Stages
    • Din, M.; Zheng, W.; Rashid, M.; Wang, S.; Shi, Z. Evaluating Hyperspectral Vegetation Indices for Leaf Area Index Estimation of Oryza sativa L. at Diverse Phenological Stages. Front. Plant Sci. 2017, 8
    • (2017) Front. Plant Sci , pp. 8
    • Din, M.1    Zheng, W.2    Rashid, M.3    Wang, S.4    Shi, Z.5
  • 118
    • 84979492674 scopus 로고    scopus 로고
    • Spectral-Spatial Feature Extraction for Hyperspectral Image Classification: A Dimension Reduction and Deep Learning Approach
    • Zhao, W.; Du, S. Spectral-Spatial Feature Extraction for Hyperspectral Image Classification: A Dimension Reduction and Deep Learning Approach. IEEE Trans. Geosci. Remote Sens. 2016, 54, 4544-4554
    • (2016) IEEE Trans. Geosci. Remote Sens , vol.54 , pp. 4544-4554
    • Zhao, W.1    Du, S.2
  • 119
    • 84977998287 scopus 로고    scopus 로고
    • Salient Band Selection for Hyperspectral Image Classification via Manifold Ranking
    • Wang, Q.; Lin, J.; Yuan, Y. Salient Band Selection for Hyperspectral Image Classification via Manifold Ranking. IEEE Trans. Neural Netw. Learn. Syst. 2016, 27, 1279-1289
    • (2016) IEEE Trans. Neural Netw. Learn. Syst , vol.27 , pp. 1279-1289
    • Wang, Q.1    Lin, J.2    Yuan, Y.3
  • 120
    • 85041366489 scopus 로고    scopus 로고
    • Spectral-Spatial Residual Network for Hyperspectral Image Classification: A 3-D Deep Learning Framework
    • Zhong, Z.; Li, J.; Luo, Z.; Chapman, M. Spectral-Spatial Residual Network for Hyperspectral Image Classification: A 3-D Deep Learning Framework. IEEE Trans. Geosci. Remote Sens. 2017, PP, 1-12
    • (2017) IEEE Trans. Geosci. Remote Sens , pp. 1-12
    • Zhong, Z.1    Li, J.2    Luo, Z.3    Chapman, M.4
  • 121
    • 84995532079 scopus 로고    scopus 로고
    • Deep LearningWith Attribute Profiles for Hyperspectral Image Classification
    • Aptoula, E.; Ozdemir, M.C.; Yanikoglu, B. Deep LearningWith Attribute Profiles for Hyperspectral Image Classification. IEEE Geosci. Remote Sens. Lett. 2016, 13, 1970-1974
    • (2016) IEEE Geosci. Remote Sens. Lett , vol.13 , pp. 1970-1974
    • Aptoula, E.1    Ozdemir, M.C.2    Yanikoglu, B.3
  • 122
    • 85016510342 scopus 로고    scopus 로고
    • Transferred Deep Learning for Anomaly Detection in Hyperspectral Imagery
    • Li, W.; Wu, G.; Du, Q. Transferred Deep Learning for Anomaly Detection in Hyperspectral Imagery. IEEE Geosci. Remote Sens. Lett. 2017, 14, 597-601
    • (2017) IEEE Geosci. Remote Sens. Lett , vol.14 , pp. 597-601
    • Li, W.1    Wu, G.2    Du, Q.3
  • 123
    • 85034767499 scopus 로고    scopus 로고
    • accessed on 9 October 2017
    • Hexagon Geospatial Erdas Imagine® 2016 Product Features and Comparisons. Available online: http://www.hexagongeospatial.com/technical-documents/product-descriptions-2016/erdas-imagine-2016-product-description (accessed on 9 October 2017)
  • 124
    • 85034764894 scopus 로고    scopus 로고
    • accessed on 29 March 2017
    • Harris Geospatial ENVI Software Platform. Available online: http://www.harrisgeospatial.com/(accessed on 29 March 2017)
  • 125
    • 85034744388 scopus 로고    scopus 로고
    • accessed on 29 March 2017
    • Image Lab Software Bio-Rad. Available online: http://www.bio-rad.com/en-us/product/image-labsoftware (accessed on 29 March 2017)
  • 126
    • 85034765220 scopus 로고    scopus 로고
    • accessed on 29 March 2017
    • Brandywine Photonics Hyperspectral Imaging and CMOS Image Sensors. Available online: http://brandywinephotonics.com/(accessed on 29 March 2017)
  • 127
    • 85034767779 scopus 로고    scopus 로고
    • accessed on 29 March 2017
    • Resonon Inc. SpectrononPro Manual (Release 5.0). Available online: http://docs.resonon.com/spectronon/pika_manual/SpectrononProManual.pdf (accessed on 29 March 2017)
    • SpectrononPro Manual (Release 5.0)
  • 128
    • 85034785391 scopus 로고    scopus 로고
    • accessed on 29 March 2017
    • Welcome to Spectral Python (SPy)-Spectral Python 0.18 documentation. Available online: http://www. spectralpython.net/(accessed on 29 March 2017)
  • 129
    • 85034783467 scopus 로고    scopus 로고
    • accessed on 29 March 2017
    • Jelmer Oosthoek Hyperspectral Python (HypPy). Available online: https://www.itc.nl/personal/bakker/hyppy.html (accessed on 29 March 2017)
  • 131
    • 85034737739 scopus 로고    scopus 로고
    • accessed on 29 March 2017
    • Isaac Gerg Matlab Hyperspectral Toolbox. Available online: https://github.com/isaacgerg/matlabHyperspectralToolbox (accessed on 29 March 2017)
  • 133
    • 85034764114 scopus 로고    scopus 로고
    • accessed on 16 August 2017
    • TensorFlow. Available online: https://www.tensorflow.org/(accessed on 16 August 2017)
  • 134
    • 85034761513 scopus 로고    scopus 로고
    • accessed on 16 August 2017
    • Welcome-Theano 0.9.0 Documentation. Available online: http://deeplearning.net/software/theano/(accessed on 16 August 2017)
  • 135
    • 84975625640 scopus 로고
    • Nondestructive measurement of chlorophyll pigment content in plant leaves from three-color reflectance and transmittance
    • Yamada, N.; Fujimura, S. Nondestructive measurement of chlorophyll pigment content in plant leaves from three-color reflectance and transmittance. Appl. Opt. 1991, 30, 3964-3973
    • (1991) Appl. Opt , vol.30 , pp. 3964-3973
    • Yamada, N.1    Fujimura, S.2
  • 136
    • 84887537551 scopus 로고    scopus 로고
    • Processing and Assessment of Spectrometric, Stereoscopic Imagery Collected Using a Lightweight UAV Spectral Camera for Precision Agriculture
    • Honkavaara, E.; Saari, H.; Kaivosoja, J.; Pölönen, I.; Hakala, T.; Litkey, P.; Mäkynen, J.; Pesonen, L. Processing and Assessment of Spectrometric, Stereoscopic Imagery Collected Using a Lightweight UAV Spectral Camera for Precision Agriculture. Remote Sens. 2013, 5, 5006-5039
    • (2013) Remote Sens , vol.5 , pp. 5006-5039
    • Honkavaara, E.1    Saari, H.2    Kaivosoja, J.3    Pölönen, I.4    Hakala, T.5    Litkey, P.6    Mäkynen, J.7    Pesonen, L.8
  • 137
    • 84855428733 scopus 로고    scopus 로고
    • Fluorescence, temperature and narrow-band indices acquired from a UAV platform for water stress detection using a micro-hyperspectral imager and a thermal camera
    • Zarco-Tejada, P.J.; González-Dugo, V.; Berni, J.A. J. Fluorescence, temperature and narrow-band indices acquired from a UAV platform for water stress detection using a micro-hyperspectral imager and a thermal camera. Remote Sens. Environ. 2012, 117, 322-337
    • (2012) Remote Sens. Environ , vol.117 , pp. 322-337
    • Zarco-Tejada, P.J.1    González-Dugo, V.2    Berni, J.A.J.3
  • 138
    • 84883497539 scopus 로고    scopus 로고
    • High-resolution airborne hyperspectral and thermal imagery for early detection of Verticillium wilt of olive using fluorescence, temperature and narrow-band spectral indices
    • Calderón, R.; Navas-Cortés, J.A.; Lucena, C.; Zarco-Tejada, P.J. High-resolution airborne hyperspectral and thermal imagery for early detection of Verticillium wilt of olive using fluorescence, temperature and narrow-band spectral indices. Remote Sens. Environ. 2013, 139, 231-245
    • (2013) Remote Sens. Environ , vol.139 , pp. 231-245
    • Calderón, R.1    Navas-Cortés, J.A.2    Lucena, C.3    Zarco-Tejada, P.J.4
  • 139
    • 84979937191 scopus 로고    scopus 로고
    • Angular Dependency of Hyperspectral Measurements over Wheat Characterized by a Novel UAV Based Goniometer
    • Burkart, A.; Aasen, H.; Alonso, L.; Menz, G.; Bareth, G.; Rascher, U. Angular Dependency of Hyperspectral Measurements over Wheat Characterized by a Novel UAV Based Goniometer. Remote Sens. 2015, 7, 725-746
    • (2015) Remote Sens , vol.7 , pp. 725-746
    • Burkart, A.1    Aasen, H.2    Alonso, L.3    Menz, G.4    Bareth, G.5    Rascher, U.6
  • 141
    • 84888390832 scopus 로고    scopus 로고
    • A case study of a precision fertilizer application task generation for wheat based on classified hyperspectral data from UAV combined with farm history data
    • Dresden, Germany, 15 October
    • Kaivosoja, J.; Pesonen, L.; Kleemola, J.; Pölönen, I.; Salo, H.; Honkavaara, E.; Saari, H.; Mäkynen, J.; Rajala, A. A case study of a precision fertilizer application task generation for wheat based on classified hyperspectral data from UAV combined with farm history data. In Proceedings of the SPIE Remote Sensing, Dresden, Germany, 15 October 2013
    • (2013) Proceedings of the SPIE Remote Sensing
    • Kaivosoja, J.1    Pesonen, L.2    Kleemola, J.3    Pölönen, I.4    Salo, H.5    Honkavaara, E.6    Saari, H.7    Mäkynen, J.8    Rajala, A.9
  • 142
    • 84941263991 scopus 로고    scopus 로고
    • Generating 3D hyperspectral information with lightweight UAV snapshot cameras for vegetation monitoring: From camera calibration to quality assurance
    • Aasen, H.; Burkart, A.; Bolten, A.; Bareth, G. Generating 3D hyperspectral information with lightweight UAV snapshot cameras for vegetation monitoring: From camera calibration to quality assurance. ISPRS J. Photogramm. Remote Sens. 2015, 108, 245-259
    • (2015) ISPRS J. Photogramm. Remote Sens , vol.108 , pp. 245-259
    • Aasen, H.1    Burkart, A.2    Bolten, A.3    Bareth, G.4
  • 144
    • 79955076643 scopus 로고    scopus 로고
    • Supervised Machine Learning: A Review of Classification Techniques
    • Kotsiantis, S.B. Supervised Machine Learning: A Review of Classification Techniques. Informatica 2007, 31
    • (2007) Informatica , pp. 31
    • Kotsiantis, S.B.1
  • 145
  • 148
    • 84912144701 scopus 로고    scopus 로고
    • UAV Flight Experiments Applied to the Remote Sensing of Vegetated Areas
    • Salamí, E.; Barrado, C.; Pastor, E. UAV Flight Experiments Applied to the Remote Sensing of Vegetated Areas. Remote Sens. 2014, 6, 11051-11081
    • (2014) Remote Sens , vol.6 , pp. 11051-11081
    • Salamí, E.1    Barrado, C.2    Pastor, E.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.