메뉴 건너뛰기




Volumn 10, Issue 10, 2018, Pages

Weed mapping with UAS imagery and a bag of visualwords based image classifier

Author keywords

Bag of visual words; Low altitude UAS flights; Object based image classification; Weed mapping

Indexed keywords

ANTENNAS; MAPPING; SITE SELECTION; TRAINING AIRCRAFT; UNMANNED AERIAL VEHICLES (UAV); WEED CONTROL;

EID: 85055450732     PISSN: None     EISSN: 20724292     Source Type: Journal    
DOI: 10.3390/rs10101530     Document Type: Article
Times cited : (48)

References (55)
  • 1
    • 0000958515 scopus 로고
    • Competition between crop and weeds: A system approach
    • Holzner, W., Numata, M., Eds.; Springer Netherlands: Dordrecht, The Netherlands
    • Spitters, C.J.T.; Van Den Bergh, J.P. Competition between crop and weeds: A system approach. In Biology and Ecology of Weeds; Holzner, W., Numata, M., Eds.; Springer Netherlands: Dordrecht, The Netherlands, 1982; pp. 137-148. ISBN 978-90-481-8519-1
    • (1982) Biology and Ecology of Weeds , pp. 137-148
    • Spitters, C.J.T.1    Van Den Bergh, J.P.2
  • 2
    • 0004063096 scopus 로고    scopus 로고
    • 3rd ed Elsevier/Academic Press: Amsterdam, The Netherlands; Boston, MA, USA
    • Zimdahl, R.L. Fundamentals of Weed Science, 3rd ed.; Elsevier/Academic Press: Amsterdam, The Netherlands; Boston, MA, USA, 2007; ISBN 978-0-12-372518-9
    • (2007) Fundamentals of Weed Science
    • Zimdahl, R.L.1
  • 3
    • 84875093096 scopus 로고    scopus 로고
    • A 3D model for light interception in heterogeneous crop:weed canopies: Model structure and evaluation
    • Munier-Jolain, N.M.; Guyot, S.H.M.; Colbach, N. A 3D model for light interception in heterogeneous crop:weed canopies: Model structure and evaluation. Ecol. Model. 2013, 250, 101-110
    • (2013) Ecol. Model , vol.250 , pp. 101-110
    • Munier-Jolain, N.M.1    Guyot, S.H.M.2    Colbach, N.3
  • 4
    • 0012695769 scopus 로고
    • Yield losses in wheat due to weed communities dominated by green foxtail [Setaria viridis (L.) Beauv.]: A multispecies approach
    • Hume, L. Yield losses in wheat due to weed communities dominated by green foxtail [Setaria viridis (L.) Beauv.]: A multispecies approach. Can. J. Plant Sci. 1989, 69, 521-529
    • (1989) Can. J. Plant Sci , vol.69 , pp. 521-529
    • Hume, L.1
  • 5
    • 1542380820 scopus 로고    scopus 로고
    • Yield loss due to weeds in cereals and its large-scale variability in Sweden
    • Milberg, P.; Hallgren, E. Yield loss due to weeds in cereals and its large-scale variability in Sweden. Field Crops Res. 2004, 86, 199-209
    • (2004) Field Crops Res , vol.86 , pp. 199-209
    • Milberg, P.1    Hallgren, E.2
  • 6
    • 84922726337 scopus 로고    scopus 로고
    • Weed growth and crop yield loss in wheat as influenced by row spacing and weed emergence times
    • Fahad, S.; Hussain, S.; Chauhan, B.S.; Saud, S.; Wu, C.; Hassan, S.; Tanveer, M.; Jan, A.; Huang, J. Weed growth and crop yield loss in wheat as influenced by row spacing and weed emergence times. Crop Prot. 2015, 71, 101-108
    • (2015) Crop Prot , vol.71 , pp. 101-108
    • Fahad, S.1    Hussain, S.2    Chauhan, B.S.3    Saud, S.4    Wu, C.5    Hassan, S.6    Tanveer, M.7    Jan, A.8    Huang, J.9
  • 7
    • 0003698989 scopus 로고    scopus 로고
    • Food and Agriculture Organization of the United Nations: Rome, Italy
    • Food and Agriculture Organization of the United Nations. FAOSTAT Statistics Database; Food and Agriculture Organization of the United Nations: Rome, Italy, 2013
    • (2013) FAOSTAT Statistics Database
  • 8
    • 85017390088 scopus 로고    scopus 로고
    • Long-term trends in the intensity and relative toxicity of herbicide use
    • Kniss, A.R. Long-term trends in the intensity and relative toxicity of herbicide use. Nat. Commun. 2017, 8, 14865
    • (2017) Nat. Commun , vol.8 , pp. 14865
    • Kniss, A.R.1
  • 9
    • 85020471402 scopus 로고    scopus 로고
    • Glyphosate residues in groundwater, drinking water and urine of subsistence farmers from intensive agriculture localities: A survey in Hopelchén, Campeche, Mexico
    • Rendon-von Osten, J.; Dzul-Caamal, R. Glyphosate residues in groundwater, drinking water and urine of subsistence farmers from intensive agriculture localities: A survey in Hopelchén, Campeche, Mexico. Int. J. Environ. Res. Public Health 2017, 14, 595
    • (2017) Int. J. Environ. Res. Public Health , vol.14 , pp. 595
    • Rendon-von Osten, J.1    Dzul-Caamal, R.2
  • 11
    • 85029469550 scopus 로고    scopus 로고
    • The 2015 European Union report on pesticide residues in food
    • European Food Safety Authority. The 2015 European Union report on pesticide residues in food. EFSA J. 2017, 15
    • (2017) EFSA J , pp. 15
  • 14
    • 84947488129 scopus 로고    scopus 로고
    • Target precision and biological efficacy of two nozzles used for precision weed control
    • Jensen, P.K. Target precision and biological efficacy of two nozzles used for precision weed control. Precis. Agric. 2015, 16, 705-717
    • (2015) Precis. Agric , vol.16 , pp. 705-717
    • Jensen, P.K.1
  • 15
    • 44649115314 scopus 로고    scopus 로고
    • Assessment of unmanned aerial vehicles imagery for quantitative monitoring of wheat crop in small plots
    • Lelong, C.C.D.; Burger, P.; Jubelin, G.; Roux, B.; Labbé, S.; Baret, F. Assessment of unmanned aerial vehicles imagery for quantitative monitoring of wheat crop in small plots. Sensors 2008, 8, 3557-3585
    • (2008) Sensors , vol.8 , pp. 3557-3585
    • Lelong, C.C.D.1    Burger, P.2    Jubelin, G.3    Roux, B.4    Labbé, S.5    Baret, F.6
  • 16
    • 40749118103 scopus 로고    scopus 로고
    • Development and application of an autonomous unmanned aerial vehicle for precise aerobiological sampling above agricultural fields
    • Schmale, D.G.; Dingus, B.R.; Reinholtz, C. Development and application of an autonomous unmanned aerial vehicle for precise aerobiological sampling above agricultural fields. J. Field Robot. 2008, 25, 133-147
    • (2008) J. Field Robot , vol.25 , pp. 133-147
    • Schmale, D.G.1    Dingus, B.R.2    Reinholtz, C.3
  • 17
    • 79960900017 scopus 로고    scopus 로고
    • An automated stand-alone in-field remote sensing system (SIRSS) for in-season crop monitoring
    • Xiang, H.T.; Tian, L. An automated stand-alone in-field remote sensing system (SIRSS) for in-season crop monitoring. Comput. Electron. Agric. 2011, 78, 1-8
    • (2011) Comput. Electron. Agric , vol.78 , pp. 1-8
    • Xiang, H.T.1    Tian, L.2
  • 18
    • 84866044645 scopus 로고    scopus 로고
    • A light-weight multi-spectral aerial imaging system for nitrogen crop monitoring
    • Lebourgeois, V.; Begue, A.; Labbe, S.; Houles, M.; Martine, J.F. A light-weight multi-spectral aerial imaging system for nitrogen crop monitoring. Precis. Agric. 2012, 13, 525-541
    • (2012) Precis. Agric , vol.13 , pp. 525-541
    • Lebourgeois, V.1    Begue, A.2    Labbe, S.3    Houles, M.4    Martine, J.F.5
  • 20
    • 84947500069 scopus 로고    scopus 로고
    • Unkrauterkennung mit Hilfe unbemannter Luftfahrzeuge
    • Pflanz, M.; Feistkorn, D.; Nordmeyer, H. Unkrauterkennung mit Hilfe unbemannter Luftfahrzeuge. Julius-Kühn-Arch. 2014, 443, 396-403
    • (2014) Julius-Kühn-Arch , vol.443 , pp. 396-403
    • Pflanz, M.1    Feistkorn, D.2    Nordmeyer, H.3
  • 21
    • 0000503696 scopus 로고    scopus 로고
    • Remote sensing contributions to the scale issue
    • Marceau, D.J.; Hay, G.J. Remote sensing contributions to the scale issue. Can. J. Remote Sens. 1999, 25, 357-366
    • (1999) Can. J. Remote Sens , vol.25 , pp. 357-366
    • Marceau, D.J.1    Hay, G.J.2
  • 22
    • 32044455517 scopus 로고    scopus 로고
    • Predicting nitrogen status of rice using multispectral data at canopy scale
    • Zhang, J.-H.; Ke, W.; Bailey, J.; Ren-Chao, W. Predicting nitrogen status of rice using multispectral data at canopy scale. Pedosphere 2006, 16, 108-117
    • (2006) Pedosphere , vol.16 , pp. 108-117
    • Zhang, J.-H.1    Ke, W.2    Bailey, J.3    Ren-Chao, W.4
  • 23
    • 37349092830 scopus 로고    scopus 로고
    • Estimation of leaf total chlorophyll and nitrogen concentrations using hyperspectral satellite imagery
    • Rama Rao, N.; Garg, P.; Ghosh, S.; Dadhwal, V. Estimation of leaf total chlorophyll and nitrogen concentrations using hyperspectral satellite imagery. J. Agric. Sci. 2008, 146, 65-75
    • (2008) J. Agric. Sci , vol.146 , pp. 65-75
    • Rama Rao, N.1    Garg, P.2    Ghosh, S.3    Dadhwal, V.4
  • 25
    • 85055439877 scopus 로고    scopus 로고
    • Automatisierte Unkrauterkennung auf dem Acker-Möglichkeiten und Grenzen
    • Pflanz, M.; Nordmeyer, H. Automatisierte Unkrauterkennung auf dem Acker-Möglichkeiten und Grenzen. Julius-Kühn-Arch. 2016, 452, 241-248
    • (2016) Julius-Kühn-Arch , vol.452 , pp. 241-248
    • Pflanz, M.1    Nordmeyer, H.2
  • 27
    • 35948956367 scopus 로고    scopus 로고
    • Development of an agricultural crops spectral library and classification of crops at cultivar level using hyperspectral data
    • Rao, N.R.; Garg, P.; Ghosh, S. Development of an agricultural crops spectral library and classification of crops at cultivar level using hyperspectral data. Precis. Agric. 2007, 8, 173-185
    • (2007) Precis. Agric , vol.8 , pp. 173-185
    • Rao, N.R.1    Garg, P.2    Ghosh, S.3
  • 29
    • 38149077100 scopus 로고    scopus 로고
    • Multispectral classification of grass weeds and wheat (Triticum durum) using linear and nonparametric functional discriminant analysis and neural networks: Multispectral classification of grass weeds in wheat
    • López-Granados, F.; Peña-Barragán, J.M.; Jurado-Expósito, M.; Francisco-Fernández, M.; Cao, R.; Alonso-Betanzos, A.; Fontenla-Romero, O. Multispectral classification of grass weeds and wheat (Triticum durum) using linear and nonparametric functional discriminant analysis and neural networks: Multispectral classification of grass weeds in wheat. Weed Res. 2008, 48, 28-37
    • (2008) Weed Res , vol.48 , pp. 28-37
    • López-Granados, F.1    Peña-Barragán, J.M.2    Jurado-Expósito, M.3    Francisco-Fernández, M.4    Cao, R.5    Alonso-Betanzos, A.6    Fontenla-Romero, O.7
  • 30
    • 0033386630 scopus 로고    scopus 로고
    • Evaluating the accuracy of mapping weeds in seedling crops using airborne digital imaging: Avena spp. in seedling triticale
    • Lamb, D.W.;Weedon, M.M.; Rew, L.J. Evaluating the accuracy of mapping weeds in seedling crops using airborne digital imaging: Avena spp. in seedling triticale. Weed Res. 1999, 39, 481-492
    • (1999) Weed Res , vol.39 , pp. 481-492
    • Lamb, D.W.1    Weedon, M.M.2    Rew, L.J.3
  • 31
    • 33747451314 scopus 로고    scopus 로고
    • A special vegetation index for the weed detection in sensor based precision agriculture
    • Langner, H.R.; Bottger, H.; Schmidt, H. A special vegetation index for the weed detection in sensor based precision agriculture. Environ. Monit. Assess. 2006, 117, 505-518
    • (2006) Environ. Monit. Assess , vol.117 , pp. 505-518
    • Langner, H.R.1    Bottger, H.2    Schmidt, H.3
  • 32
    • 0026124532 scopus 로고
    • Shape description of completely visible and partially occluded leaves for identifying plants in digital image
    • Franz, E.; Gebhardt, M.R.; Unklesbay, K.B. Shape description of completely visible and partially occluded leaves for identifying plants in digital image. Trans. ASABE 1991, 34, 673-681
    • (1991) Trans. ASABE , vol.34 , pp. 673-681
    • Franz, E.1    Gebhardt, M.R.2    Unklesbay, K.B.3
  • 33
  • 35
    • 82155195483 scopus 로고    scopus 로고
    • Sequential support vector machine classification for small-grain weed species discrimination with special regard to Cirsium arvense and Galium aparine
    • Rumpf, T.; Römer, C.;Weis, M.; Sökefeld, M.; Gerhards, R.; Plümer, L. Sequential support vector machine classification for small-grain weed species discrimination with special regard to Cirsium arvense and Galium aparine. Comput. Electron. Agric. 2012, 80, 89-96
    • (2012) Comput. Electron. Agric , vol.80 , pp. 89-96
    • Rumpf, T.1    Römer, C.2    Weis, M.3    Sökefeld, M.4    Gerhards, R.5    Plümer, L.6
  • 36
    • 47149115270 scopus 로고    scopus 로고
    • Classification of crops and weeds extracted by active shape models
    • Persson, M.; Åstrand, B. Classification of crops and weeds extracted by active shape models. Biosyst. Eng. 2008, 100, 484-497
    • (2008) Biosyst. Eng , vol.100 , pp. 484-497
    • Persson, M.1    Åstrand, B.2
  • 39
    • 85044762870 scopus 로고    scopus 로고
    • Sugar beet and volunteer potato classification using Bag-of-Visual-Words model, Scale-Invariant Feature Transform, or Speeded Up Robust Feature descriptors and crop row information
    • Suh, H.K.; Hofstee, J.W.; IJsselmuiden, J.; van Henten, E.J. Sugar beet and volunteer potato classification using Bag-of-Visual-Words model, Scale-Invariant Feature Transform, or Speeded Up Robust Feature descriptors and crop row information. Biosyst. Eng. 2018, 166, 210-226
    • (2018) Biosyst. Eng , vol.166 , pp. 210-226
    • Suh, H.K.1    Hofstee, J.W.2    Ijsselmuiden, J.3    van Henten, E.J.4
  • 41
    • 84989955034 scopus 로고    scopus 로고
    • Plant species classification using deep convolutional neural network
    • Dyrmann, M.; Karstoft, H.; Midtiby, H.S. Plant species classification using deep convolutional neural network. Biosyst. Eng. 2016, 151, 72-80
    • (2016) Biosyst. Eng , vol.151 , pp. 72-80
    • Dyrmann, M.1    Karstoft, H.2    Midtiby, H.S.3
  • 42
    • 84885398102 scopus 로고    scopus 로고
    • Weed mapping in early-season maize fields using object-based analysis of unmanned aerial vehicle (UAV) Images
    • Peña, J.M.; Torres-Sánchez, J.; de Castro, A.I.; Kelly, M.; López-Granados, F. Weed mapping in early-season maize fields using object-based analysis of unmanned aerial vehicle (UAV) Images. PLoS ONE 2013, 8, e77151
    • (2013) PLoS ONE , vol.8
    • Peña, J.M.1    Torres-Sánchez, J.2    de Castro, A.I.3    Kelly, M.4    López-Granados, F.5
  • 44
    • 84920065888 scopus 로고    scopus 로고
    • Feature learning based approach for weed classification using high resolution aerial images from a digital camera mounted on a UAV
    • Hung, C.; Xu, Z.; Sukkarieh, S. Feature learning based approach for weed classification using high resolution aerial images from a digital camera mounted on a UAV. Remote Sens. 2014, 6, 12037-12054
    • (2014) Remote Sens , vol.6 , pp. 12037-12054
    • Hung, C.1    Xu, Z.2    Sukkarieh, S.3
  • 45
    • 85046034633 scopus 로고    scopus 로고
    • A fully convolutional network for weed mapping of unmanned aerial vehicle (UAV) imagery
    • Huang, H.; Deng, J.; Lan, Y.; Yang, A.; Deng, X.; Zhang, L. A fully convolutional network for weed mapping of unmanned aerial vehicle (UAV) imagery. PLoS ONE 2018, 13, e0196302
    • (2018) PLoS ONE , vol.13
    • Huang, H.1    Deng, J.2    Lan, Y.3    Yang, A.4    Deng, X.5    Zhang, L.6
  • 48
    • 85051722319 scopus 로고
    • Color gamut transform pairs
    • Smith, A.R. Color gamut transform pairs. ACM Siggr. Comput. Graph. 1978, 12, 12-19
    • (1978) ACM Siggr. Comput. Graph , vol.12 , pp. 12-19
    • Smith, A.R.1
  • 50
    • 3042535216 scopus 로고    scopus 로고
    • Distinctive image features from scale-invariant keypoints
    • Lowe, D.G. Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 2004, 60, 91-110
    • (2004) Int. J. Comput. Vis , vol.60 , pp. 91-110
    • Lowe, D.G.1
  • 53
    • 0004162649 scopus 로고    scopus 로고
    • Prentice Hall Professional Technical Reference: Englewood, NJ, USA
    • Forsyth, D.A.; Ponce, J. Computer Vision: A Modern Approach; Prentice Hall Professional Technical Reference: Englewood, NJ, USA, 2002; ISBN 0-13-085198-1
    • (2002) Computer Vision: A Modern Approach
    • Forsyth, D.A.1    Ponce, J.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.