메뉴 건너뛰기




Volumn , Issue , 2012, Pages 1-471

Regression models as a tool in medical research

Author keywords

[No Author keywords available]

Indexed keywords


EID: 85055365319     PISSN: None     EISSN: None     Source Type: Book    
DOI: 10.1201/b12925     Document Type: Book
Times cited : (20)

References (76)
  • 1
    • 0002980230 scopus 로고
    • A model for non-parametric regression analysis of counting processes
    • W Klonecki, A Kozek, and J Rosinski, editors, New York: Springer
    • Aalen O (1980). A model for non-parametric regression analysis of counting processes. In W Klonecki, A Kozek, and J Rosinski, editors, Lecture Notes in Statistics 2, pages 1–25. New York: Springer.
    • (1980) Lecture Notes in Statistics , vol.2 , pp. 1-25
    • Aalen, O.1
  • 4
    • 79952599212 scopus 로고    scopus 로고
    • A regression model for the conditional probability of a competing event: Application to monoclonal gammopathy of unknown significance
    • Allignol A, Latouche A, Yan J, and Fine JP (2011). A regression model for the conditional probability of a competing event: application to monoclonal gammopathy of unknown significance. Journal of the Royal Statistical Society Series C—Applied Statistics 60:135–142.
    • (2011) Journal of the Royal Statistical Society Series C—Applied Statistics , vol.60 , pp. 135-142
    • Allignol, A.1    Latouche, A.2    Yan, J.3    Fine, J.P.4
  • 6
    • 84861472646 scopus 로고    scopus 로고
    • Reporting recommendations for tumor marker prognostic studies (REMARK): Explanation and elaboration
    • Altman D, McShane L, Sauerbrei W, and Taube S (2012). Reporting recommendations for tumor marker prognostic studies (REMARK): Explanation and elaboration. BMC Medicine 10:51.
    • (2012) BMC Medicine , vol.10 , pp. 51
    • Altman, D.1    McShane, L.2    Sauerbrei, W.3    Taube, S.4
  • 8
    • 0031463463 scopus 로고    scopus 로고
    • Regression models for ordinal responses: A review of methods and applications
    • Ananth C and Kleinbaum D (1997). Regression models for ordinal responses: A review of methods and applications. International Journal of Epidemiology 26:1323–1333.
    • (1997) International Journal of Epidemiology , vol.26 , pp. 1323-1333
    • Ananth, C.1    Kleinbaum, D.2
  • 10
    • 84861192518 scopus 로고    scopus 로고
    • Performance of binary markers for censored failure time outcome: Nonparametric approach based on proportions
    • Antolini L and Valsecchi MG (2012). Performance of binary markers for censored failure time outcome: Nonparametric approach based on proportions. Statistics in Medicine 31:1113–1128.
    • (2012) Statistics in Medicine , vol.31 , pp. 1113-1128
    • Antolini, L.1    Valsecchi, M.G.2
  • 11
    • 70349575428 scopus 로고    scopus 로고
    • Understanding confounding and mediation
    • Babyak M (2009). Understanding confounding and mediation. Evidence Based Mental Health 12:68–71.
    • (2009) Evidence Based Mental Health , vol.12 , pp. 68-71
    • Babyak, M.1
  • 12
    • 19944372078 scopus 로고    scopus 로고
    • Generating survival times to simulate Cox proportional hazards models
    • Bender R, Augustin T, and Blettner M (2005). Generating survival times to simulate Cox proportional hazards models. Statistics in Medicine 24:1713–1723.
    • (2005) Statistics in Medicine , vol.24 , pp. 1713-1723
    • Bender, R.1    Augustin, T.2    Blettner, M.3
  • 13
    • 0040784343 scopus 로고    scopus 로고
    • Calculating ordinal regression models in SAS and S-Plus
    • Bender R and Benner A (2000). Calculating ordinal regression models in SAS and S-Plus. Biometrical Journal 42:677–699.
    • (2000) Biometrical Journal , vol.42 , pp. 677-699
    • Bender, R.1    Benner, A.2
  • 14
    • 0003802343 scopus 로고
    • Classification and Regression Trees. Statistics/Probability Series. Belmont
    • U.S.A.: Wadsworth Publishing Company
    • Breiman L, Friedman JH, Olshen RA, and Stone CJ (1984). Classification and Regression Trees. Statistics/Probability Series. Belmont, California, U.S.A.: Wadsworth Publishing Company.
    • (1984) California
    • Breiman, L.1    Friedman, J.H.2    Olshen, R.A.3    Stone, C.J.4
  • 17
    • 0001814845 scopus 로고
    • Principal components analysis and exploratory and confirmatory factor analysis
    • L Grimm and P Yarnold, editors, Washington: American Psychological Association Books
    • Bryant F and Yarnold P (1995). Principal components analysis and exploratory and confirmatory factor analysis. In L Grimm and P Yarnold, editors, Reading and Understanding Multivariate Analysis, pages 99–135. Washington: American Psychological Association Books.
    • (1995) Reading and Understanding Multivariate Analysis , pp. 99-135
    • Bryant, F.1    Yarnold, P.2
  • 20
    • 0000429149 scopus 로고
    • Modeling multivariate binary data with alternating logistic regressions
    • Carey V, Zeger S, and Diggle P (1993). Modeling multivariate binary data with alternating logistic regressions. Biometrika 80:517–526.
    • (1993) Biometrika , vol.80 , pp. 517-526
    • Carey, V.1    Zeger, S.2    Diggle, P.3
  • 23
    • 84936916896 scopus 로고
    • Robust locally weighted regression and smoothing scatterplots
    • Cleveland W (1979). Robust locally weighted regression and smoothing scatterplots. Journal of the American Statistical Association 74:829–836.
    • (1979) Journal of the American Statistical Association , vol.74 , pp. 829-836
    • Cleveland, W.1
  • 24
    • 0026586963 scopus 로고
    • Improving screening for dementia in the elderly using minimental state examination subscores, Benton’s visual retention test, and Isaacs’ set test
    • Commenges D, Gagnon M, Letenneur L, Dartigues J, Barbarger-Gateau P, and Salamon R (1992). Improving screening for dementia in the elderly using minimental state examination subscores, Benton’s visual retention test, and Isaacs’ set test. Epidemiology 3:185–188.
    • (1992) Epidemiology , vol.3 , pp. 185-188
    • Commenges, D.1    Gagnon, M.2    Letenneur, L.3    Dartigues, J.4    Barbarger-Gateau, P.5    Salamon, R.6
  • 26
    • 1542532754 scopus 로고    scopus 로고
    • A proportional hazards model for the subdistribution of a competing risk
    • Fine P and Gray R (1999). A proportional hazards model for the subdistribution of a competing risk. Journal of the American Statistical Association 94:496–506.
    • (1999) Journal of the American Statistical Association , vol.94 , pp. 496-506
    • Fine, P.1    Gray, R.2
  • 28
    • 77956891487 scopus 로고
    • Biased estimates of treatment effect in randomized experiments with nonlinear regressions and omitted covariates
    • Gail M, Wieand S, and Piantadosi S (1984). Biased estimates of treatment effect in randomized experiments with nonlinear regressions and omitted covariates. Biometrika 71:431–444.
    • (1984) Biometrika , vol.71 , pp. 431-444
    • Gail, M.1    Wieand, S.2    Piantadosi, S.3
  • 29
    • 0022973522 scopus 로고
    • Identifiability, exchangeability, and epidemiologic confounding
    • Greenland S and Robins J (1986). Identifiability, exchangeability, and epidemiologic confounding. International Journal of Epidemiology 15:413–419.
    • (1986) International Journal of Epidemiology , vol.15 , pp. 413-419
    • Greenland, S.1    Robins, J.2
  • 30
    • 0002864224 scopus 로고    scopus 로고
    • Confounding and collapsibility in causal inference
    • Greenland S, Robins J, and Pearl J (1999). Confounding and collapsibility in causal inference. Statistical Science 14:29–46.
    • (1999) Statistical Science , vol.14 , pp. 29-46
    • Greenland, S.1    Robins, J.2    Pearl, J.3
  • 33
    • 0033980767 scopus 로고    scopus 로고
    • The prognostic value of angiogenesis by Chalkley counting in a confirmatory study design on 836 breast cancer patients
    • Hansen S, Grabau D, Sorensen F, Bak M, Vach W, and Rose C (2000). The prognostic value of angiogenesis by Chalkley counting in a confirmatory study design on 836 breast cancer patients. Clinical Cancer Research 6:139–146.
    • (2000) Clinical Cancer Research , vol.6 , pp. 139-146
    • Hansen, S.1    Grabau, D.2    Sorensen, F.3    Bak, M.4    Vach, W.5    Rose, C.6
  • 35
    • 0035881468 scopus 로고    scopus 로고
    • The association between physical workload and low back pain clouded by the “healthy worker” effect—Population-based cross-sectional and 5-year prospective questionnaire study
    • Hartvigsen J, Bakketeig L, Leboeuf-Yde C, Engberg M, and Lauritzen T (2001). The association between physical workload and low back pain clouded by the “healthy worker” effect—Population-based cross-sectional and 5-year prospective questionnaire study. Spine 26:1788–1792.
    • (2001) Spine , vol.26 , pp. 1788-1792
    • Hartvigsen, J.1    Bakketeig, L.2    Leboeuf-Yde, C.3    Engberg, M.4    Lauritzen, T.5
  • 37
    • 29544445940 scopus 로고    scopus 로고
    • Individual survival time prediction using statistical models
    • Henderson R and Keiding N (2005). Individual survival time prediction using statistical models. Journal of Medical Ethics 31:703–706.
    • (2005) Journal of Medical Ethics , vol.31 , pp. 703-706
    • Henderson, R.1    Keiding, N.2
  • 40
    • 0015905420 scopus 로고
    • Marginal likelihoods based on Cox’s regression and life table model
    • Kalbfleisch JD and Prentice RL (1973). Marginal likelihoods based on Cox’s regression and life table model. Biometrika 60:267–278.
    • (1973) Biometrika , vol.60 , pp. 267-278
    • Kalbfleisch, J.D.1    Prentice, R.L.2
  • 42
    • 77649173768 scopus 로고
    • Longitudinal data analysis using generalized linear models
    • Liang K and Zeger S (1986). Longitudinal data analysis using generalized linear models. Biometrika 73:13–22.
    • (1986) Biometrika , vol.73 , pp. 13-22
    • Liang, K.1    Zeger, S.2
  • 45
    • 0000785485 scopus 로고
    • A geometric approach to assess bias due to omitted covariates in generalized linear-models
    • Neuhaus J and Jewell N (1993). A geometric approach to assess bias due to omitted covariates in generalized linear-models. Biometrika 80:807–815.
    • (1993) Biometrika , vol.80 , pp. 807-815
    • Neuhaus, J.1    Jewell, N.2
  • 46
    • 0031776315 scopus 로고    scopus 로고
    • Between- and within-cluster covariate effects in the analysis of clustered data
    • Neuhaus J and Kalbfleisch J (1998). Between- and within-cluster covariate effects in the analysis of clustered data. Biometrics 54:638–645.
    • (1998) Biometrics , vol.54 , pp. 638-645
    • Neuhaus, J.1    Kalbfleisch, J.2
  • 48
    • 0035667653 scopus 로고    scopus 로고
    • Contemporary update of prostate cancer staging nomograms (Partin Tables) for the new millennium
    • Partin A, Mangold L, Lamm D, Walsh P, Epstein J, and Pearson J (2001). Contemporary update of prostate cancer staging nomograms (Partin Tables) for the new millennium. Urology 59:843–848.
    • (2001) Urology , vol.59 , pp. 843-848
    • Partin, A.1    Mangold, L.2    Lamm, D.3    Walsh, P.4    Epstein, J.5    Pearson, J.6
  • 49
    • 0027166881 scopus 로고
    • Kaplan-Meier, marginal or conditional probability curves in sumarizing competing risk failure data?
    • Pepe M and Mori M (1993). Kaplan-Meier, marginal or conditional probability curves in sumarizing competing risk failure data? Statistics in Medicine 12:737–751.
    • (1993) Statistics in Medicine , vol.12 , pp. 737-751
    • Pepe, M.1    Mori, M.2
  • 50
    • 0018671320 scopus 로고
    • Logistic disease incidence models and case-control studies
    • Prentice R and Pyke R (1979). Logistic disease incidence models and case-control studies. Biometrika 66:403-412.
    • (1979) Biometrika , vol.66 , pp. 403-412
    • Prentice, R.1    Pyke, R.2
  • 52
    • 84949193513 scopus 로고
    • Reducing bias in observational studies using subclassification on the propensity score
    • Rosenbaum P and Rubin D (1984). Reducing bias in observational studies using subclassification on the propensity score. Journal of the American Statistical Association 79:516–524.
    • (1984) Journal of the American Statistical Association , vol.79 , pp. 516-524
    • Rosenbaum, P.1    Rubin, D.2
  • 53
    • 0024426743 scopus 로고
    • Correction of logistic regression relative risk estimates and confidence intervals for systematic within-person measurement error
    • Rosner B, Willett W, and Spiegelman D (1989). Correction of logistic regression relative risk estimates and confidence intervals for systematic within-person measurement error. Statistics in Medicine 8:1051–1069.
    • (1989) Statistics in Medicine , vol.8 , pp. 1051-1069
    • Rosner, B.1    Willett, W.2    Spiegelman, D.3
  • 54
    • 20344370565 scopus 로고    scopus 로고
    • Multiple imputation of missing values
    • Royston P (2004). Multiple imputation of missing values. Stata Journal 4:227–241.
    • (2004) Stata Journal , vol.4 , pp. 227-241
    • Royston, P.1
  • 55
    • 0004509186 scopus 로고
    • Regression using fractional polynomials of continous covariates: Parsimonious parametric modelling (with discussion)
    • Royston P and Altman D (1994). Regression using fractional polynomials of continous covariates: Parsimonious parametric modelling (with discussion). Applied Statistics 43:429–467.
    • (1994) Applied Statistics , vol.43 , pp. 429-467
    • Royston, P.1    Altman, D.2
  • 58
    • 0027081755 scopus 로고
    • A bootstrap resampling procedure for model-building - Application to the Cox regression-model
    • Sauerbrei W and Schumacher M (1992). A bootstrap resampling procedure for model-building - Application to the Cox regression-model. Statistics in Medicine 11:2093–2109.
    • (1992) Statistics in Medicine , vol.11 , pp. 2093-2109
    • Sauerbrei, W.1    Schumacher, M.2
  • 60
    • 0020974571 scopus 로고
    • Sample-size formula for the proportional-hazards regressionmodel
    • Schoenfeld D (1983). Sample-size formula for the proportional-hazards regressionmodel. Biometrics 39:499–503.
    • (1983) Biometrics , vol.39 , pp. 499-503
    • Schoenfeld, D.1
  • 61
    • 0023433230 scopus 로고
    • The impact of heterogeneity on the comparison of survival times
    • Schumacher M, Olschewski M, and Schmoor C (1987). The impact of heterogeneity on the comparison of survival times. Statistics in Medicine 6:773–784.
    • (1987) Statistics in Medicine , vol.6 , pp. 773-784
    • Schumacher, M.1    Olschewski, M.2    Schmoor, C.3
  • 62
    • 38849111846 scopus 로고    scopus 로고
    • Stratification for the propensity score compared with linear regression techniques to assess the effect of treatment or exposure
    • Senn S, Graf E, and Caputo A (2007). Stratification for the propensity score compared with linear regression techniques to assess the effect of treatment or exposure. Statistics in Medicine 26:5529–5544.
    • (2007) Statistics in Medicine , vol.26 , pp. 5529-5544
    • Senn, S.1    Graf, E.2    Caputo, A.3
  • 66
    • 33645226210 scopus 로고    scopus 로고
    • A review of the application of propensity score methods yielded increasing use, advantages in specific settings, but not substantially different estimates compared with conventional multivariable methods
    • Sturmer T, Joshi M, Glynn R, Avorn J, Rothman K, and Schneeweiss S (2006). A review of the application of propensity score methods yielded increasing use, advantages in specific settings, but not substantially different estimates compared with conventional multivariable methods. Journal of Clinical Epidemiology 59:437–447.
    • (2006) Journal of Clinical Epidemiology , vol.59 , pp. 437-447
    • Sturmer, T.1    Joshi, M.2    Glynn, R.3    Avorn, J.4    Rothman, K.5    Schneeweiss, S.6
  • 68
    • 0034522905 scopus 로고    scopus 로고
    • Measurement error correction using validation data: A review of methods and their applicability in case-control studies
    • Thurigen D, Spiegelman D, Blettner M, Heuer C, and Brenner H (2000). Measurement error correction using validation data: A review of methods and their applicability in case-control studies. Statistical Methods in Medical Research 9:447–474.
    • (2000) Statistical Methods in Medical Research , vol.9 , pp. 447-474
    • Thurigen, D.1    Spiegelman, D.2    Blettner, M.3    Heuer, C.4    Brenner, H.5
  • 69
    • 0025885661 scopus 로고
    • Biased estimation of the odds ratio in case-control studies due to the use of ad-hoc methods of correcting for missing values for confounding variables
    • Vach W and Blettner M (1991). Biased estimation of the odds ratio in case-control studies due to the use of ad-hoc methods of correcting for missing values for confounding variables. American Journal of Epidemiology 134:895–907.
    • (1991) American Journal of Epidemiology , vol.134 , pp. 895-907
    • Vach, W.1    Blettner, M.2
  • 70
    • 2942639651 scopus 로고    scopus 로고
    • A simple approach to power and sample size calculations in logistic regression and Cox regression models
    • Vaeth M and Skovlund E (2004). A simple approach to power and sample size calculations in logistic regression and Cox regression models. Statistics in Medicine 23:1781–92.
    • (2004) Statistics in Medicine , vol.23 , pp. 1781-1792
    • Vaeth, M.1    Skovlund, E.2
  • 72
    • 33847382959 scopus 로고    scopus 로고
    • Relaxing the rule of ten events per variable in logistic and Cox regression
    • Vittinghoff E and McCulloch C (2007). Relaxing the rule of ten events per variable in logistic and Cox regression. American Journal of Epidemiology 165:710-718.
    • (2007) American Journal of Epidemiology , vol.165 , pp. 710-718
    • Vittinghoff, E.1    McCulloch, C.2
  • 74
    • 78649551872 scopus 로고    scopus 로고
    • Bias and efficiency of multiple imputation compared with complete-case analysis for missing covariate values
    • White IR and Carlin JB (2010). Bias and efficiency of multiple imputation compared with complete-case analysis for missing covariate values. Statistics in Medicine 29:2920–2931.
    • (2010) Statistics in Medicine , vol.29 , pp. 2920-2931
    • White, I.R.1    Carlin, J.B.2
  • 75
    • 0035642992 scopus 로고    scopus 로고
    • Efficiency study of estimators for a treatment effect in a pretest-posttest trial
    • Yang L and Tsiatis AA (2001). Efficiency study of estimators for a treatment effect in a pretest-posttest trial. The American Statistician 55:314–321.
    • (2001) The American Statistician , vol.55 , pp. 314-321
    • Yang, L.1    Tsiatis, A.A.2
  • 76
    • 0024205301 scopus 로고
    • Models for longitudinal data - a generalized estimating equation approach
    • Zeger S, Liang K, and Albert P (1988). Models for longitudinal data - a generalized estimating equation approach. Biometrics 44:1049–1060.
    • (1988) Biometrics , vol.44 , pp. 1049-1060
    • Zeger, S.1    Liang, K.2    Albert, P.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.