메뉴 건너뛰기




Volumn 127, Issue 5, 2019, Pages 512-531

Locality Preserving Matching

Author keywords

Feature matching; Image registration; Locality preservation; Outlier removal; Rigid and non rigid transformations

Indexed keywords

ARTIFICIAL INTELLIGENCE; IMAGE REGISTRATION; SOFTWARE ENGINEERING;

EID: 85053758796     PISSN: 09205691     EISSN: 15731405     Source Type: Journal    
DOI: 10.1007/s11263-018-1117-z     Document Type: Article
Times cited : (519)

References (65)
  • 5
    • 0016557674 scopus 로고
    • Multidimensional binary search trees used for associative searching
    • Bentley, J. L. (1975). Multidimensional binary search trees used for associative searching. Communications of the ACM, 18(9), 509–517.
    • (1975) Communications of the ACM , vol.18 , Issue.9 , pp. 509-517
    • Bentley, J.L.1
  • 8
    • 2442436526 scopus 로고    scopus 로고
    • Gaussian fields: A new criterion for 3d rigid registration
    • Boughorbel, F., Koschan, A., Abidi, B., & Abidi, M. (2004). Gaussian fields: A new criterion for 3d rigid registration. Pattern Recognition, 37(7), 1567–1571.
    • (2004) Pattern Recognition , vol.37 , Issue.7 , pp. 1567-1571
    • Boughorbel, F.1    Koschan, A.2    Abidi, B.3    Abidi, M.4
  • 12
    • 0042904903 scopus 로고    scopus 로고
    • A new point matching algorithm for non-rigid registration
    • Chui, H., & Rangarajan, A. (2003). A new point matching algorithm for non-rigid registration. Computer Vision and Image Understanding, 89, 114–141.
    • (2003) Computer Vision and Image Understanding , vol.89 , pp. 114-141
    • Chui, H.1    Rangarajan, A.2
  • 15
    • 0019574599 scopus 로고
    • Random sample consensus: A paradigm for model fitting with application to image analysis and automated cartography
    • Fischler, M. A., & Bolles, R. C. (1981). Random sample consensus: A paradigm for model fitting with application to image analysis and automated cartography. Communications of the ACM, 24(6), 381–395.
    • (1981) Communications of the ACM , vol.24 , Issue.6 , pp. 381-395
    • Fischler, M.A.1    Bolles, R.C.2
  • 16
    • 85018505038 scopus 로고    scopus 로고
    • Semi-supervised sparse representation based classification for face recognition with insufficient labeled samples
    • Gao, Y., Ma, J., & Yuille, A. L. (2017). Semi-supervised sparse representation based classification for face recognition with insufficient labeled samples. IEEE Transactions on Image Processing, 26(5), 2545–2560.
    • (2017) IEEE Transactions on Image Processing , vol.26 , Issue.5 , pp. 2545-2560
    • Gao, Y.1    Ma, J.2    Yuille, A.L.3
  • 17
    • 84858443793 scopus 로고    scopus 로고
    • Good match exploration using triangle constraint
    • Guo, X., & Cao, X. (2012). Good match exploration using triangle constraint. Pattern Recognition Letters, 33(7), 872–881.
    • (2012) Pattern Recognition Letters , vol.33 , Issue.7 , pp. 872-881
    • Guo, X.1    Cao, X.2
  • 19
    • 84960087578 scopus 로고    scopus 로고
    • Matching images with multiple descriptors: An unsupervised approach for locally adaptive descriptor selection
    • Hu, Y. T., Lin, Y. Y., Chen, H. Y., Hsu, K. J., & Chen, B. Y. (2015). Matching images with multiple descriptors: An unsupervised approach for locally adaptive descriptor selection. IEEE Transactions on Image Processing, 24(12), 5995–6010.
    • (2015) IEEE Transactions on Image Processing , vol.24 , Issue.12 , pp. 5995-6010
    • Hu, Y.T.1    Lin, Y.Y.2    Chen, H.Y.3    Hsu, K.J.4    Chen, B.Y.5
  • 20
  • 22
    • 85007486852 scopus 로고    scopus 로고
    • Srlsp: A face image super-resolution algorithm using smooth regression with local structure prior
    • Jiang, J., Chen, C., Ma, J., Wang, Z., Wang, Z., & Hu, R. (2017). Srlsp: A face image super-resolution algorithm using smooth regression with local structure prior. IEEE Transactions on Multimedia, 19(1), 27–40.
    • (2017) IEEE Transactions on Multimedia , vol.19 , Issue.1 , pp. 27-40
    • Jiang, J.1    Chen, C.2    Ma, J.3    Wang, Z.4    Wang, Z.5    Hu, R.6
  • 23
    • 84885403593 scopus 로고    scopus 로고
    • California-ND: An annotated dataset for near-duplicate detection in personal photo collections
    • Jinda-Apiraksa, A., Vonikakis, V., Winkler, S.: California-ND: An annotated dataset for near-duplicate detection in personal photo collections. In: QoMEX, pp. 142–147 (2013)
    • (2013) Qomex , pp. 142-147
    • Jinda-Apiraksa, A.1    Vonikakis, V.2    Winkler, S.3
  • 26
    • 74549174770 scopus 로고    scopus 로고
    • Rejecting mismatches by correspondence function
    • Li, X., & Hu, Z. (2010). Rejecting mismatches by correspondence function. International Journal of Computer Vision, 89(1), 1–17.
    • (2010) International Journal of Computer Vision , vol.89 , Issue.1 , pp. 1-17
    • Li, X.1    Hu, Z.2
  • 32
    • 84897662610 scopus 로고    scopus 로고
    • Visual homing from scale with an uncalibrated omnidirectional camera
    • Liu, M., Pradalier, C., & Siegwart, R. (2013). Visual homing from scale with an uncalibrated omnidirectional camera. IEEE Transactions on Robotics, 29(6), 1353–1365.
    • (2013) IEEE Transactions on Robotics , vol.29 , Issue.6 , pp. 1353-1365
    • Liu, M.1    Pradalier, C.2    Siegwart, R.3
  • 34
    • 3042535216 scopus 로고    scopus 로고
    • Distinctive image features from scale-invariant keypoints
    • Lowe, D. (2004). Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision, 60(2), 91–110.
    • (2004) International Journal of Computer Vision , vol.60 , Issue.2 , pp. 91-110
    • Lowe, D.1
  • 35
    • 85023197929 scopus 로고    scopus 로고
    • Feature guided gaussian mixture model with semi-supervised em and local geometric constraint for retinal image registration
    • Ma, J., Jiang, J., Liu, C., & Li, Y. (2017). Feature guided gaussian mixture model with semi-supervised em and local geometric constraint for retinal image registration. Information Sciences, 417, 128–142.
    • (2017) Information Sciences , vol.417 , pp. 128-142
    • Ma, J.1    Jiang, J.2    Liu, C.3    Li, Y.4
  • 36
  • 38
    • 85030214723 scopus 로고    scopus 로고
    • Non-rigid point set registration with robust transformation estimation under manifold regularization
    • Ma, J., Zhao, J., Jiang, J., Zhou, H.: Non-rigid point set registration with robust transformation estimation under manifold regularization. In: Proceedings of AAAI conference artificial intelligence, pp. 4218–4224 (2017)
    • (2017) Proceedings of AAAI Conference Artificial Intelligence , pp. 4218-4224
    • Ma, J.1    Zhao, J.2    Jiang, J.3    Zhou, H.4
  • 40
    • 84916618475 scopus 로고    scopus 로고
    • Non-rigid visible and infrared face registration via regularized gaussian fields criterion
    • Ma, J., Zhao, J., Ma, Y., & Tian, J. (2015). Non-rigid visible and infrared face registration via regularized gaussian fields criterion. Pattern Recognition, 48(3), 772–784.
    • (2015) Pattern Recognition , vol.48 , Issue.3 , pp. 772-784
    • Ma, J.1    Zhao, J.2    Ma, Y.3    Tian, J.4
  • 43
    • 85003781887 scopus 로고    scopus 로고
    • Non-rigid point set registration by preserving global and local structures
    • Ma, J., Zhao, J., & Yuille, A. L. (2016). Non-rigid point set registration by preserving global and local structures. IEEE Transactions on Image Processing, 25(1), 53–64.
    • (2016) IEEE Transactions on Image Processing , vol.25 , Issue.1 , pp. 53-64
    • Ma, J.1    Zhao, J.2    Yuille, A.L.3
  • 44
    • 85027932133 scopus 로고    scopus 로고
    • Robust feature matching for remote sensing image registration via locally linear transforming
    • Ma, J., Zhou, H., Zhao, J., Gao, Y., Jiang, J., & Tian, J. (2015). Robust feature matching for remote sensing image registration via locally linear transforming. IEEE Transactions on Geoscience and Remote Sensing, 53(12), 6469–6481.
    • (2015) IEEE Transactions on Geoscience and Remote Sensing , vol.53 , Issue.12 , pp. 6469-6481
    • Ma, J.1    Zhou, H.2    Zhao, J.3    Gao, Y.4    Jiang, J.5    Tian, J.6
  • 46
    • 14544299611 scopus 로고    scopus 로고
    • On learning vector-valued functions
    • Micchelli, C. A., & Pontil, M. (2005). On learning vector-valued functions. Neural Computation, 17(1), 177–204.
    • (2005) Neural Computation , vol.17 , Issue.1 , pp. 177-204
    • Micchelli, C.A.1    Pontil, M.2
  • 48
    • 33750070001 scopus 로고    scopus 로고
    • Local visual homing by matched-filter descent in image distances
    • Möller, R., & Vardy, A. (2006). Local visual homing by matched-filter descent in image distances. Biological Cybernetics, 95(5), 413–430.
    • (2006) Biological Cybernetics , vol.95 , Issue.5 , pp. 413-430
    • Möller, R.1    Vardy, A.2
  • 53
    • 84871762374 scopus 로고    scopus 로고
    • On the robustness of visual homing under landmark uncertainty
    • Schroeter, D., & Newman, P. (2008). On the robustness of visual homing under landmark uncertainty. Intelligent Autonomous Systems, 10, 278–287.
    • (2008) Intelligent Autonomous Systems , vol.10 , pp. 278-287
    • Schroeter, D.1    Newman, P.2
  • 55
    • 0033894631 scopus 로고    scopus 로고
    • MLESAC: A new robust estimator with application to estimating image geometry
    • Torr, P. H. S., & Zisserman, A. (2000). MLESAC: A new robust estimator with application to estimating image geometry. Computer Vision and Image Understanding, 78(1), 138–156.
    • (2000) Computer Vision and Image Understanding , vol.78 , Issue.1 , pp. 138-156
    • Torr, P.H.S.1    Zisserman, A.2
  • 59
    • 84994403232 scopus 로고    scopus 로고
    • Learning coherent vector fields for robust point matching under manifold regularization
    • Wang, G., Wang, Z., Chen, Y., Liu, X., Ren, Y., & Peng, L. (2016). Learning coherent vector fields for robust point matching under manifold regularization. Neurocomputing, 216, 393–401.
    • (2016) Neurocomputing , vol.216 , pp. 393-401
    • Wang, G.1    Wang, Z.2    Chen, Y.3    Liu, X.4    Ren, Y.5    Peng, L.6
  • 61
    • 84983786120 scopus 로고    scopus 로고
    • Removing mismatches for retinal image registration via multi-attribute-driven regularized mixture model
    • Wang, G., Wang, Z., Chen, Y., Zhou, Q., & Zhao, W. (2016). Removing mismatches for retinal image registration via multi-attribute-driven regularized mixture model. Information Sciences, 372, 492–504.
    • (2016) Information Sciences , vol.372 , pp. 492-504
    • Wang, G.1    Wang, Z.2    Chen, Y.3    Zhou, Q.4    Zhao, W.5
  • 62
    • 85021101762 scopus 로고    scopus 로고
    • Remote sensing image registration using multiple image features
    • Yang, K., Pan, A., Yang, Y., Zhang, S., Ong, S. H., & Tang, H. (2017). Remote sensing image registration using multiple image features. Remote Sensing, 9(6), 581.
    • (2017) Remote Sensing , vol.9 , Issue.6 , pp. 581
    • Yang, K.1    Pan, A.2    Yang, Y.3    Zhang, S.4    Ong, S.H.5    Tang, H.6
  • 63
    • 84908049634 scopus 로고    scopus 로고
    • A robust global and local mixture distance based non-rigid point set registration
    • Yang, Y., Ong, S. H., & Foong, K. W. C. (2015). A robust global and local mixture distance based non-rigid point set registration. Pattern Recognition, 48(1), 156–173.
    • (2015) Pattern Recognition , vol.48 , Issue.1 , pp. 156-173
    • Yang, Y.1    Ong, S.H.2    Foong, K.W.C.3
  • 65
    • 33144483552 scopus 로고    scopus 로고
    • Robust point matching for nonrigid shapes by preserving local neighborhood structures
    • Zheng, Y., & Doermann, D. (2006). Robust point matching for nonrigid shapes by preserving local neighborhood structures. IEEE Transactions on Pattern Analysis and Machine Intelligence, 28(4), 643–649.
    • (2006) IEEE Transactions on Pattern Analysis and Machine Intelligence , vol.28 , Issue.4 , pp. 643-649
    • Zheng, Y.1    Doermann, D.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.