메뉴 건너뛰기




Volumn 19, Issue 3, 2018, Pages 284-294

Principled missing data treatments

Author keywords

Auxiliary variables; Full information maximum likelihood; Intent to treat; Missing data; Multiple imputation; Statistical inference

Indexed keywords

ARTICLE; DATA ANALYSIS; HUMAN; MAXIMUM LIKELIHOOD METHOD; THEORETICAL STUDY; EVIDENCE BASED MEDICINE; METHODOLOGY; PREVENTIVE MEDICINE; STATISTICAL ANALYSIS; STATISTICAL BIAS;

EID: 85053552663     PISSN: 13894986     EISSN: 15736695     Source Type: Journal    
DOI: 10.1007/s11121-016-0644-5     Document Type: Article
Times cited : (206)

References (47)
  • 1
    • 0004093524 scopus 로고    scopus 로고
    • Thousand Oaks, CA: Sage Publications
    • Allison, P. D. (2002). Missing data. Thousand Oaks, CA: Sage Publications.
    • (2002) Missing Data
    • Allison, P.D.1
  • 2
    • 0000254441 scopus 로고
    • Maximum likelihood estimates for a multivariate normal distribution when some observations are missing
    • Anderson, T.W. (1957). Maximum likelihood estimates for a multivariate normal distribution when some observations are missing. Journal of the American Statistical Association, 52, 200–203. doi:10.1080/01621459.1957.10501379.
    • (1957) Journal of the American Statistical Association , vol.52 , pp. 200-203
    • Anderson, T.W.1
  • 3
    • 77955807436 scopus 로고    scopus 로고
    • A review of hot deck imputation for survey non-response
    • Andridge, R. R., & Little, R. J. A. (2010). A review of hot deck imputation for survey non-response. International Statistical Review, 78, 40–64. doi:10.1111/j.1751-5823.2010.00103.x.
    • (2010) International Statistical Review , vol.78 , pp. 40-64
    • Andridge, R.R.1    Little, R.J.A.2
  • 4
    • 0002914202 scopus 로고    scopus 로고
    • Full information estimation in the presence of incomplete data
    • In G. A. Marcoulides & R. E. Schumacker (Eds.), Mahwah, NJ: Lawrence Erlbaum Associates, Inc
    • Arbuckle, J. L. (1996). Full information estimation in the presence of incomplete data. In G. A. Marcoulides & R. E. Schumacker (Eds.), Advanced structural equation modeling (pp. 243–277). Mahwah, NJ: Lawrence Erlbaum Associates, Inc.
    • (1996) Advanced Structural Equation Modeling , pp. 243-277
    • Arbuckle, J.L.1
  • 5
    • 33846806001 scopus 로고    scopus 로고
    • Missing data: Prevalence and reporting practices
    • Bodner, T. E. (2006). Missing data: prevalence and reporting practices. Psychological Reports, 99, 675–680. doi:10.2466/PR0.99.7.675-680.
    • (2006) Psychological Reports , vol.99 , pp. 675-680
    • Bodner, T.E.1
  • 7
    • 0035755636 scopus 로고    scopus 로고
    • A comparison of inclusive and restrictive strategies in modern missing data procedures
    • Collins, L. M., Schafer, J. L., & Kam, C. M. (2001). A comparison of inclusive and restrictive strategies in modern missing data procedures. Psychological Methods, 6, 330–351. doi:10.1037//1082-989X.6.4.330.
    • (2001) Psychological Methods , vol.6 , pp. 330-351
    • Collins, L.M.1    Schafer, J.L.2    Kam, C.M.3
  • 8
    • 4243828610 scopus 로고
    • Informative dropout in longitudinal data analysis (With discussion)
    • Diggle, P., & Kenward, M. G. (1994). Informative dropout in longitudinal data analysis (with discussion). Applied Statistics, 43, 49–94.
    • (1994) Applied Statistics , vol.43 , pp. 49-94
    • Diggle, P.1    Kenward, M.G.2
  • 9
    • 0035537304 scopus 로고    scopus 로고
    • The performance of the full information maximum likelihood estimator in multiple regression models with missing data
    • Enders, C. K. (2001). The performance of the full information maximum likelihood estimator in multiple regression models with missing data. Educational and Psychological Measurement, 61, 713–740. doi:10.1177/00131640121971482.
    • (2001) Educational and Psychological Measurement , vol.61 , pp. 713-740
    • Enders, C.K.1
  • 11
    • 0000885702 scopus 로고    scopus 로고
    • The relative performance of full information maximum likelihood estimation for missing data in structural equation models
    • Enders, C. K., & Bandalos, D. L. (2001). The relative performance of full information maximum likelihood estimation for missing data in structural equation models. Structural Equation Modeling, 8, 430–457. doi:10.1207/S15328007SEM0803_5.
    • (2001) Structural Equation Modeling , vol.8 , pp. 430-457
    • Enders, C.K.1    Bandalos, D.L.2
  • 12
    • 63049094081 scopus 로고    scopus 로고
    • Multilevel models with multivariate mixed response types
    • Goldstein, H., Carpenter, J., Kenward, M. G., & Levin, K. A. (2009). Multilevel models with multivariate mixed response types. Statistical Modelling, 9, 173–197. doi:10.1177/1471082X0800900301.
    • (2009) Statistical Modelling , vol.9 , pp. 173-197
    • Goldstein, H.1    Carpenter, J.2    Kenward, M.G.3    Levin, K.A.4
  • 13
    • 84893732515 scopus 로고    scopus 로고
    • Fitting multilevel multivariate models with missing data in responses and covariates that may include interactions and non-linear terms
    • Goldstein, H., Carpenter, J., & Browne, W. J. (2014). Fitting multilevel multivariate models with missing data in responses and covariates that may include interactions and non-linear terms. Journal of the Royal Statistical Society: Series A (Statistics in Society), 177, 553–564. doi:10.1111/rssa.12022.
    • (2014) Journal of the Royal Statistical Society: Series a (Statistics in Society) , vol.177 , pp. 553-564
    • Goldstein, H.1    Carpenter, J.2    Browne, W.J.3
  • 14
    • 0347249765 scopus 로고    scopus 로고
    • Adding missing-data-relevant variables to FIML based structural equation models
    • Graham, J. W. (2003). Adding missing-data-relevant variables to FIML based structural equation models. Structural Equation Modeling, 10, 80–100. doi:10.1207/S15328007SEM1001_4.
    • (2003) Structural Equation Modeling , vol.10 , pp. 80-100
    • Graham, J.W.1
  • 16
    • 34548451124 scopus 로고    scopus 로고
    • How many imputations are really needed? Some practical clarifications of multiple imputation theory
    • Graham, J. W., Olchowski, A. E., & Gilreath, T. D. (2007). How many imputations are really needed? Some practical clarifications of multiple imputation theory. Prevention Science, 8, 206–213. doi:10.1007/s11121-007-0070-9.
    • (2007) Prevention Science , vol.8 , pp. 206-213
    • Graham, J.W.1    Olchowski, A.E.2    Gilreath, T.D.3
  • 17
    • 0001766028 scopus 로고
    • The common structure of statistical models of truncation, sample selection and limited dependent variables and a simple estimator for such models
    • Heckman, J. (1976). The common structure of statistical models of truncation, sample selection and limited dependent variables and a simple estimator for such models. The Annals of Economic and Social Measurement, 5, 475–492.
    • (1976) The Annals of Economic and Social Measurement , vol.5 , pp. 475-492
    • Heckman, J.1
  • 18
    • 0000125534 scopus 로고
    • Sample selection bias as a specification error
    • Heckman, J. (1979). Sample selection bias as a specification error. Econometrica, 47, 153–161. doi:10.2307/1912352.
    • (1979) Econometrica , vol.47 , pp. 153-161
    • Heckman, J.1
  • 19
    • 77954332545 scopus 로고    scopus 로고
    • What to do about missing values in time-series cross-section data
    • Honaker, J., & King, G. (2010). What to do about missing values in time-series cross-section data. American Journal of Political Science, 54, 561–581. doi:10.1111/j.1540-5907.2010.00447.x.
    • (2010) American Journal of Political Science , vol.54 , pp. 561-581
    • Honaker, J.1    King, G.2
  • 21
    • 84931569171 scopus 로고    scopus 로고
    • Using principal components as auxiliary variables in missing data estimation
    • Howard, W., Rhemtulla, M., & Little, T. D. (2015). Using principal components as auxiliary variables in missing data estimation. Multivariate Behavioral Research, 50, 285–299. doi:10.1080/00273171.2014.999267.
    • (2015) Multivariate Behavioral Research , vol.50 , pp. 285-299
    • Howard, W.1    Rhemtulla, M.2    Little, T.D.3
  • 22
    • 21144483152 scopus 로고
    • Pattern-mixture models for multivariate incomplete data
    • Little, R. J.A. (1993). Pattern-mixture models for multivariate incomplete data. Journal of the American Statistical Association, 88, 125–134. doi:10.2307/2290705.
    • (1993) Journal of the American Statistical Association , vol.88 , pp. 125-134
    • Little, R.J.A.1
  • 23
    • 84950452119 scopus 로고
    • Modeling the drop-out mechanism in repeatedmeasures studies
    • Little, R. J. A. (1995). Modeling the drop-out mechanism in repeatedmeasures studies. Journal of the American Statistical Association, 90, 1112–1121. doi:10.1080/01621459.1995.10476615.
    • (1995) Journal of the American Statistical Association , vol.90 , pp. 1112-1121
    • Little, R.J.A.1
  • 25
    • 0030460385 scopus 로고    scopus 로고
    • Intent-to-treat analysis for longitudinal studies with drop-outs
    • Little, R. J. A., & Yau, L. (1996). Intent-to-treat analysis for longitudinal studies with drop-outs. Biometrics, 52, 1324–1333. doi:10.2307/2532847.
    • (1996) Biometrics , vol.52 , pp. 1324-1333
    • Little, R.J.A.1    Yau, L.2
  • 27
    • 85008688552 scopus 로고    scopus 로고
    • Missing data
    • In D. Cicchetti (Ed.), Theory and method (3rd ed, New York: Wiley
    • Little, T. D., Lang, K. M., Wu, W., & Rhemtulla, M. (2016).Missing data. In D. Cicchetti (Ed.), Developmental Psychopathology: Vol. 1. Theory and method (3rd ed., pp. 760–796). New York: Wiley.
    • (2016) Developmental Psychopathology , vol.1 , pp. 760-796
    • Little, T.D.1    Lang, K.M.2    Wu, W.3    Rhemtulla, M.4
  • 28
    • 0033637095 scopus 로고    scopus 로고
    • Multiple imputation and posterior simulation for multivariate missing data in longitudinal studies
    • Liu, M., Taylor, J. M. G., & Belin, T. R. (2000). Multiple imputation and posterior simulation for multivariate missing data in longitudinal studies. Biometrics, 56, 1157–1163. doi:10.1111/j.0006-341X.2000.01157.x.
    • (2000) Biometrics , vol.56 , pp. 1157-1163
    • Liu, M.1    Taylor, J.M.G.2    Belin, T.R.3
  • 29
    • 12744272198 scopus 로고    scopus 로고
    • Missing data in educational research: A review of reporting practices and suggestions for improvement
    • Peugh, J. L., & Enders, C. K. (2004). Missing data in educational research: a review of reporting practices and suggestions for improvement. Review of Educational Research, 74, 525–556. doi:10.3102/00346543074004525.
    • (2004) Review of Educational Research , vol.74 , pp. 525-556
    • Peugh, J.L.1    Enders, C.K.2
  • 30
    • 0002344593 scopus 로고    scopus 로고
    • A multivariate technique for multiply imputing missing values using a sequence of regression models
    • Raghunathan, T. E., Lepkowski, J.M., Van Hoewyk, J., & Solenberger, P. (2001). A multivariate technique for multiply imputing missing values using a sequence of regression models. Survey Methodology, 27, 85–96.
    • (2001) Survey Methodology , vol.27 , pp. 85-96
    • Raghunathan, T.E.1    Lepkowski, J.M.2    Van Hoewyk, J.3    Solenberger, P.4
  • 34
    • 84864647620 scopus 로고    scopus 로고
    • On obtaining estimates of the fraction of missing information from full information maximum likelihood
    • Savalei, V., & Rhemtulla, M. (2012). On obtaining estimates of the fraction of missing information from full information maximum likelihood. Structural Equation Modeling, 19, 477–494. doi:10.1080/10705511.2012.687669.
    • (2012) Structural Equation Modeling , vol.19 , pp. 477-494
    • Savalei, V.1    Rhemtulla, M.2
  • 36
    • 0036017469 scopus 로고    scopus 로고
    • Computational strategies for multivariate linear mixed-effects models with missing values
    • Schafer, J. L., & Yucel, R. M. (2002). Computational strategies for multivariate linear mixed-effects models with missing values. Journal of Computational and Graphical Statistics., 11, 437–457. doi:10.1198/106186002760180608.
    • (2002) Journal of Computational and Graphical Statistics. , vol.11 , pp. 437-457
    • Schafer, J.L.1    Yucel, R.M.2
  • 37
    • 85130029608 scopus 로고    scopus 로고
    • Multiple imputation of multilevel data
    • In J. Hox & J. Roberts (Eds.), Milton Park, UK: Routledge
    • van Buuren, S. (2011). Multiple imputation of multilevel data. In J. Hox & J. Roberts (Eds.), Handbook of advanced multilevel analysis (pp. 173–196). Milton Park, UK: Routledge.
    • (2011) Handbook of Advanced Multilevel Analysis , pp. 173-196
    • Van Buuren, S.1
  • 41
    • 34548736509 scopus 로고    scopus 로고
    • Regression with missing Ys: An improved strategy for analyzing multiply imputed data
    • von Hippel, P. T. (2007). Regression with missing Ys: an improved strategy for analyzing multiply imputed data. Sociological Methodology, 37, 83–117. doi:10.1111/j.1467-9531.2007.00180.x.
    • (2007) Sociological Methodology , vol.37 , pp. 83-117
    • Von Hippel, P.T.1
  • 42
    • 69149105188 scopus 로고    scopus 로고
    • How to impute interactions, squares, and other transformed variables
    • von Hippel, P. T. (2009). How to impute interactions, squares, and other transformed variables. Sociological Methodology, 39, 265–291. doi:10.1111/j.1467-9531.2009.01215.x.
    • (2009) Sociological Methodology , vol.39 , pp. 265-291
    • Von Hippel, P.T.1
  • 43
    • 0001653457 scopus 로고    scopus 로고
    • Statistical methods in psychology journals: Guidelines and explanations
    • Wilkinson, L., & Task Force on Statistical Inference. (1999). Statistical methods in psychology journals: guidelines and explanations. American Psychologist, 54, 594–604. doi:10.1037//0003-066X.54.8.594.
    • (1999) American Psychologist , vol.54 , pp. 594-604
    • Wilkinson, L.1
  • 44
    • 84944153645 scopus 로고    scopus 로고
    • A comparison of imputation strategies for ordinal missing data on Likert scale variables
    • Wu, W., Jia, F., & Enders, C. K. (2015). A comparison of imputation strategies for ordinal missing data on Likert scale variables. Multivariate Behavioral Research, 50, 484–503. doi:10.1080/00273171.2015.1022644.
    • (2015) Multivariate Behavioral Research , vol.50 , pp. 484-503
    • Wu, W.1    Jia, F.2    Enders, C.K.3
  • 45
    • 45749108295 scopus 로고    scopus 로고
    • Multiple imputation inference for multivariate multilevel continuous data with ignorable non-response
    • Yucel, R. M. (2008). Multiple imputation inference for multivariate multilevel continuous data with ignorable non-response. Philosophical Transactions of the Royal Society A, 366, 2389–2403. doi:10.1098/rsta.2008.0038.
    • (2008) Philosophical Transactions of the Royal Society A , vol.366 , pp. 2389-2403
    • Yucel, R.M.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.