-
1
-
-
0004093524
-
-
Thousand Oaks, CA: Sage Publications
-
Allison, P. D. (2002). Missing data. Thousand Oaks, CA: Sage Publications.
-
(2002)
Missing Data
-
-
Allison, P.D.1
-
2
-
-
0000254441
-
Maximum likelihood estimates for a multivariate normal distribution when some observations are missing
-
Anderson, T.W. (1957). Maximum likelihood estimates for a multivariate normal distribution when some observations are missing. Journal of the American Statistical Association, 52, 200–203. doi:10.1080/01621459.1957.10501379.
-
(1957)
Journal of the American Statistical Association
, vol.52
, pp. 200-203
-
-
Anderson, T.W.1
-
3
-
-
77955807436
-
A review of hot deck imputation for survey non-response
-
Andridge, R. R., & Little, R. J. A. (2010). A review of hot deck imputation for survey non-response. International Statistical Review, 78, 40–64. doi:10.1111/j.1751-5823.2010.00103.x.
-
(2010)
International Statistical Review
, vol.78
, pp. 40-64
-
-
Andridge, R.R.1
Little, R.J.A.2
-
4
-
-
0002914202
-
Full information estimation in the presence of incomplete data
-
In G. A. Marcoulides & R. E. Schumacker (Eds.), Mahwah, NJ: Lawrence Erlbaum Associates, Inc
-
Arbuckle, J. L. (1996). Full information estimation in the presence of incomplete data. In G. A. Marcoulides & R. E. Schumacker (Eds.), Advanced structural equation modeling (pp. 243–277). Mahwah, NJ: Lawrence Erlbaum Associates, Inc.
-
(1996)
Advanced Structural Equation Modeling
, pp. 243-277
-
-
Arbuckle, J.L.1
-
5
-
-
33846806001
-
Missing data: Prevalence and reporting practices
-
Bodner, T. E. (2006). Missing data: prevalence and reporting practices. Psychological Reports, 99, 675–680. doi:10.2466/PR0.99.7.675-680.
-
(2006)
Psychological Reports
, vol.99
, pp. 675-680
-
-
Bodner, T.E.1
-
7
-
-
0035755636
-
A comparison of inclusive and restrictive strategies in modern missing data procedures
-
Collins, L. M., Schafer, J. L., & Kam, C. M. (2001). A comparison of inclusive and restrictive strategies in modern missing data procedures. Psychological Methods, 6, 330–351. doi:10.1037//1082-989X.6.4.330.
-
(2001)
Psychological Methods
, vol.6
, pp. 330-351
-
-
Collins, L.M.1
Schafer, J.L.2
Kam, C.M.3
-
8
-
-
4243828610
-
Informative dropout in longitudinal data analysis (With discussion)
-
Diggle, P., & Kenward, M. G. (1994). Informative dropout in longitudinal data analysis (with discussion). Applied Statistics, 43, 49–94.
-
(1994)
Applied Statistics
, vol.43
, pp. 49-94
-
-
Diggle, P.1
Kenward, M.G.2
-
9
-
-
0035537304
-
The performance of the full information maximum likelihood estimator in multiple regression models with missing data
-
Enders, C. K. (2001). The performance of the full information maximum likelihood estimator in multiple regression models with missing data. Educational and Psychological Measurement, 61, 713–740. doi:10.1177/00131640121971482.
-
(2001)
Educational and Psychological Measurement
, vol.61
, pp. 713-740
-
-
Enders, C.K.1
-
11
-
-
0000885702
-
The relative performance of full information maximum likelihood estimation for missing data in structural equation models
-
Enders, C. K., & Bandalos, D. L. (2001). The relative performance of full information maximum likelihood estimation for missing data in structural equation models. Structural Equation Modeling, 8, 430–457. doi:10.1207/S15328007SEM0803_5.
-
(2001)
Structural Equation Modeling
, vol.8
, pp. 430-457
-
-
Enders, C.K.1
Bandalos, D.L.2
-
12
-
-
63049094081
-
Multilevel models with multivariate mixed response types
-
Goldstein, H., Carpenter, J., Kenward, M. G., & Levin, K. A. (2009). Multilevel models with multivariate mixed response types. Statistical Modelling, 9, 173–197. doi:10.1177/1471082X0800900301.
-
(2009)
Statistical Modelling
, vol.9
, pp. 173-197
-
-
Goldstein, H.1
Carpenter, J.2
Kenward, M.G.3
Levin, K.A.4
-
13
-
-
84893732515
-
Fitting multilevel multivariate models with missing data in responses and covariates that may include interactions and non-linear terms
-
Goldstein, H., Carpenter, J., & Browne, W. J. (2014). Fitting multilevel multivariate models with missing data in responses and covariates that may include interactions and non-linear terms. Journal of the Royal Statistical Society: Series A (Statistics in Society), 177, 553–564. doi:10.1111/rssa.12022.
-
(2014)
Journal of the Royal Statistical Society: Series a (Statistics in Society)
, vol.177
, pp. 553-564
-
-
Goldstein, H.1
Carpenter, J.2
Browne, W.J.3
-
14
-
-
0347249765
-
Adding missing-data-relevant variables to FIML based structural equation models
-
Graham, J. W. (2003). Adding missing-data-relevant variables to FIML based structural equation models. Structural Equation Modeling, 10, 80–100. doi:10.1207/S15328007SEM1001_4.
-
(2003)
Structural Equation Modeling
, vol.10
, pp. 80-100
-
-
Graham, J.W.1
-
16
-
-
34548451124
-
How many imputations are really needed? Some practical clarifications of multiple imputation theory
-
Graham, J. W., Olchowski, A. E., & Gilreath, T. D. (2007). How many imputations are really needed? Some practical clarifications of multiple imputation theory. Prevention Science, 8, 206–213. doi:10.1007/s11121-007-0070-9.
-
(2007)
Prevention Science
, vol.8
, pp. 206-213
-
-
Graham, J.W.1
Olchowski, A.E.2
Gilreath, T.D.3
-
17
-
-
0001766028
-
The common structure of statistical models of truncation, sample selection and limited dependent variables and a simple estimator for such models
-
Heckman, J. (1976). The common structure of statistical models of truncation, sample selection and limited dependent variables and a simple estimator for such models. The Annals of Economic and Social Measurement, 5, 475–492.
-
(1976)
The Annals of Economic and Social Measurement
, vol.5
, pp. 475-492
-
-
Heckman, J.1
-
18
-
-
0000125534
-
Sample selection bias as a specification error
-
Heckman, J. (1979). Sample selection bias as a specification error. Econometrica, 47, 153–161. doi:10.2307/1912352.
-
(1979)
Econometrica
, vol.47
, pp. 153-161
-
-
Heckman, J.1
-
19
-
-
77954332545
-
What to do about missing values in time-series cross-section data
-
Honaker, J., & King, G. (2010). What to do about missing values in time-series cross-section data. American Journal of Political Science, 54, 561–581. doi:10.1111/j.1540-5907.2010.00447.x.
-
(2010)
American Journal of Political Science
, vol.54
, pp. 561-581
-
-
Honaker, J.1
King, G.2
-
20
-
-
84856305805
-
Amelia II: A program for missing data
-
Honaker, J., King, G., & Blackwell, M. (2011). Amelia II: a program for missing data. Journal of Statistical Software, 45, 1–47.
-
(2011)
Journal of Statistical Software
, vol.45
, pp. 1-47
-
-
Honaker, J.1
King, G.2
Blackwell, M.3
-
21
-
-
84931569171
-
Using principal components as auxiliary variables in missing data estimation
-
Howard, W., Rhemtulla, M., & Little, T. D. (2015). Using principal components as auxiliary variables in missing data estimation. Multivariate Behavioral Research, 50, 285–299. doi:10.1080/00273171.2014.999267.
-
(2015)
Multivariate Behavioral Research
, vol.50
, pp. 285-299
-
-
Howard, W.1
Rhemtulla, M.2
Little, T.D.3
-
22
-
-
21144483152
-
Pattern-mixture models for multivariate incomplete data
-
Little, R. J.A. (1993). Pattern-mixture models for multivariate incomplete data. Journal of the American Statistical Association, 88, 125–134. doi:10.2307/2290705.
-
(1993)
Journal of the American Statistical Association
, vol.88
, pp. 125-134
-
-
Little, R.J.A.1
-
23
-
-
84950452119
-
Modeling the drop-out mechanism in repeatedmeasures studies
-
Little, R. J. A. (1995). Modeling the drop-out mechanism in repeatedmeasures studies. Journal of the American Statistical Association, 90, 1112–1121. doi:10.1080/01621459.1995.10476615.
-
(1995)
Journal of the American Statistical Association
, vol.90
, pp. 1112-1121
-
-
Little, R.J.A.1
-
25
-
-
0030460385
-
Intent-to-treat analysis for longitudinal studies with drop-outs
-
Little, R. J. A., & Yau, L. (1996). Intent-to-treat analysis for longitudinal studies with drop-outs. Biometrics, 52, 1324–1333. doi:10.2307/2532847.
-
(1996)
Biometrics
, vol.52
, pp. 1324-1333
-
-
Little, R.J.A.1
Yau, L.2
-
26
-
-
84897819789
-
On the joys of missing data
-
Little, T.D., Jorgensen, T. D., Lang, K. M., & Moore, E.W. G. (2014).On the joys of missing data. Journal of Pediatric Psychology, 39, 151–162. doi:10.1093/jpepsy/jst048.
-
(2014)
Journal of Pediatric Psychology
, vol.39
, pp. 151-162
-
-
Little, T.D.1
Jorgensen, T.D.2
Lang, K.M.3
Moore, E.W.G.4
-
27
-
-
85008688552
-
Missing data
-
In D. Cicchetti (Ed.), Theory and method (3rd ed, New York: Wiley
-
Little, T. D., Lang, K. M., Wu, W., & Rhemtulla, M. (2016).Missing data. In D. Cicchetti (Ed.), Developmental Psychopathology: Vol. 1. Theory and method (3rd ed., pp. 760–796). New York: Wiley.
-
(2016)
Developmental Psychopathology
, vol.1
, pp. 760-796
-
-
Little, T.D.1
Lang, K.M.2
Wu, W.3
Rhemtulla, M.4
-
28
-
-
0033637095
-
Multiple imputation and posterior simulation for multivariate missing data in longitudinal studies
-
Liu, M., Taylor, J. M. G., & Belin, T. R. (2000). Multiple imputation and posterior simulation for multivariate missing data in longitudinal studies. Biometrics, 56, 1157–1163. doi:10.1111/j.0006-341X.2000.01157.x.
-
(2000)
Biometrics
, vol.56
, pp. 1157-1163
-
-
Liu, M.1
Taylor, J.M.G.2
Belin, T.R.3
-
29
-
-
12744272198
-
Missing data in educational research: A review of reporting practices and suggestions for improvement
-
Peugh, J. L., & Enders, C. K. (2004). Missing data in educational research: a review of reporting practices and suggestions for improvement. Review of Educational Research, 74, 525–556. doi:10.3102/00346543074004525.
-
(2004)
Review of Educational Research
, vol.74
, pp. 525-556
-
-
Peugh, J.L.1
Enders, C.K.2
-
30
-
-
0002344593
-
A multivariate technique for multiply imputing missing values using a sequence of regression models
-
Raghunathan, T. E., Lepkowski, J.M., Van Hoewyk, J., & Solenberger, P. (2001). A multivariate technique for multiply imputing missing values using a sequence of regression models. Survey Methodology, 27, 85–96.
-
(2001)
Survey Methodology
, vol.27
, pp. 85-96
-
-
Raghunathan, T.E.1
Lepkowski, J.M.2
Van Hoewyk, J.3
Solenberger, P.4
-
34
-
-
84864647620
-
On obtaining estimates of the fraction of missing information from full information maximum likelihood
-
Savalei, V., & Rhemtulla, M. (2012). On obtaining estimates of the fraction of missing information from full information maximum likelihood. Structural Equation Modeling, 19, 477–494. doi:10.1080/10705511.2012.687669.
-
(2012)
Structural Equation Modeling
, vol.19
, pp. 477-494
-
-
Savalei, V.1
Rhemtulla, M.2
-
36
-
-
0036017469
-
Computational strategies for multivariate linear mixed-effects models with missing values
-
Schafer, J. L., & Yucel, R. M. (2002). Computational strategies for multivariate linear mixed-effects models with missing values. Journal of Computational and Graphical Statistics., 11, 437–457. doi:10.1198/106186002760180608.
-
(2002)
Journal of Computational and Graphical Statistics.
, vol.11
, pp. 437-457
-
-
Schafer, J.L.1
Yucel, R.M.2
-
37
-
-
85130029608
-
Multiple imputation of multilevel data
-
In J. Hox & J. Roberts (Eds.), Milton Park, UK: Routledge
-
van Buuren, S. (2011). Multiple imputation of multilevel data. In J. Hox & J. Roberts (Eds.), Handbook of advanced multilevel analysis (pp. 173–196). Milton Park, UK: Routledge.
-
(2011)
Handbook of Advanced Multilevel Analysis
, pp. 173-196
-
-
Van Buuren, S.1
-
40
-
-
33751583679
-
Fully conditional specification in multivariate imputation
-
van Buuren, S., Brand, J. P. L., Groothuis-Oudshoorn, C. G. M., & Rubin, D. B. (2006). Fully conditional specification in multivariate imputation. Journal of Statistical Computation and Simulation, 76, 1049–1064. doi:10.1080/10629360600810434.
-
(2006)
Journal of Statistical Computation and Simulation
, vol.76
, pp. 1049-1064
-
-
Van Buuren, S.1
Brand, J.P.L.2
Groothuis-Oudshoorn, C.G.M.3
Rubin, D.B.4
-
41
-
-
34548736509
-
Regression with missing Ys: An improved strategy for analyzing multiply imputed data
-
von Hippel, P. T. (2007). Regression with missing Ys: an improved strategy for analyzing multiply imputed data. Sociological Methodology, 37, 83–117. doi:10.1111/j.1467-9531.2007.00180.x.
-
(2007)
Sociological Methodology
, vol.37
, pp. 83-117
-
-
Von Hippel, P.T.1
-
42
-
-
69149105188
-
How to impute interactions, squares, and other transformed variables
-
von Hippel, P. T. (2009). How to impute interactions, squares, and other transformed variables. Sociological Methodology, 39, 265–291. doi:10.1111/j.1467-9531.2009.01215.x.
-
(2009)
Sociological Methodology
, vol.39
, pp. 265-291
-
-
Von Hippel, P.T.1
-
43
-
-
0001653457
-
Statistical methods in psychology journals: Guidelines and explanations
-
Wilkinson, L., & Task Force on Statistical Inference. (1999). Statistical methods in psychology journals: guidelines and explanations. American Psychologist, 54, 594–604. doi:10.1037//0003-066X.54.8.594.
-
(1999)
American Psychologist
, vol.54
, pp. 594-604
-
-
Wilkinson, L.1
-
44
-
-
84944153645
-
A comparison of imputation strategies for ordinal missing data on Likert scale variables
-
Wu, W., Jia, F., & Enders, C. K. (2015). A comparison of imputation strategies for ordinal missing data on Likert scale variables. Multivariate Behavioral Research, 50, 484–503. doi:10.1080/00273171.2015.1022644.
-
(2015)
Multivariate Behavioral Research
, vol.50
, pp. 484-503
-
-
Wu, W.1
Jia, F.2
Enders, C.K.3
-
45
-
-
45749108295
-
Multiple imputation inference for multivariate multilevel continuous data with ignorable non-response
-
Yucel, R. M. (2008). Multiple imputation inference for multivariate multilevel continuous data with ignorable non-response. Philosophical Transactions of the Royal Society A, 366, 2389–2403. doi:10.1098/rsta.2008.0038.
-
(2008)
Philosophical Transactions of the Royal Society A
, vol.366
, pp. 2389-2403
-
-
Yucel, R.M.1
|