메뉴 건너뛰기




Volumn 152, Issue , 2018, Pages 486-495

A review on exergy analysis of aerospace power systems

Author keywords

Aerospace power systems; Exergy; Exergy analysis method; Multidisciplinary design optimization

Indexed keywords

DESIGN AIDS; ENGINES; RAMJET ENGINES;

EID: 85053065020     PISSN: 00945765     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.actaastro.2018.09.003     Document Type: Review
Times cited : (38)

References (82)
  • 1
    • 85053057932 scopus 로고    scopus 로고
    • Optimum Analysis of Thermodynamics Cycle
    • National Defense Industry Press Beijing
    • Wang, F., Optimum Analysis of Thermodynamics Cycle. 2014, National Defense Industry Press, Beijing.
    • (2014)
    • Wang, F.1
  • 2
    • 84969817839 scopus 로고    scopus 로고
    • Analysis of Thermodynamic Cycle of Hypersonic Airbreathing Propulsion
    • Science Press Beijing
    • Bao, W., Qin, J., Tang, J.F., Yu, D.R., Analysis of Thermodynamic Cycle of Hypersonic Airbreathing Propulsion. 2014, Science Press, Beijing.
    • (2014)
    • Bao, W.1    Qin, J.2    Tang, J.F.3    Yu, D.R.4
  • 3
    • 33847398160 scopus 로고    scopus 로고
    • Aerospace systems and exergy analysis: applications and methodology development needs
    • Rosen, M.A., Etele, J., Aerospace systems and exergy analysis: applications and methodology development needs. Int. J. Exergy 1 (2004), 411–425.
    • (2004) Int. J. Exergy , vol.1 , pp. 411-425
    • Rosen, M.A.1    Etele, J.2
  • 6
    • 85021089399 scopus 로고    scopus 로고
    • Thermodynamic efficiency analysis and cycle optimization of deeply precooled combined cycle engine in the air-breathing mode
    • Zhang, J.Q., Wang, Z.G., Li, Q.L., Thermodynamic efficiency analysis and cycle optimization of deeply precooled combined cycle engine in the air-breathing mode. Acta Astronaut. 138 (2017), 394–406.
    • (2017) Acta Astronaut. , vol.138 , pp. 394-406
    • Zhang, J.Q.1    Wang, Z.G.2    Li, Q.L.3
  • 8
    • 0036625534 scopus 로고    scopus 로고
    • Available energy – part II: Gibbs revisited
    • Gaggiloi, R.A., Paulus, D.M., Available energy – part II: Gibbs revisited. J. Energy Resour. Technol. 124 (2002), 110–115.
    • (2002) J. Energy Resour. Technol. , vol.124 , pp. 110-115
    • Gaggiloi, R.A.1    Paulus, D.M.2
  • 11
    • 0003497073 scopus 로고
    • The Exergy Method of Energy System Analysis
    • China Machine Press Beijing
    • Ahern, J.E., The Exergy Method of Energy System Analysis. 1981, China Machine Press, Beijing.
    • (1981)
    • Ahern, J.E.1
  • 12
    • 34249847340 scopus 로고    scopus 로고
    • A brief commented history of exergy from the beginnings to 2004
    • Sciubba, E., Wall, G., A brief commented history of exergy from the beginnings to 2004. Int. J. Therm. 10 (2007), 1–26.
    • (2007) Int. J. Therm. , vol.10 , pp. 1-26
    • Sciubba, E.1    Wall, G.2
  • 13
    • 85053032379 scopus 로고    scopus 로고
    • The Application of Exergy Analysis on the Coal-fired Unit Thermal System
    • M.S. thesis South China University of Technology Guangzhou
    • Yan, X.H., The Application of Exergy Analysis on the Coal-fired Unit Thermal System. M.S. thesis, 2009, South China University of Technology, Guangzhou.
    • (2009)
    • Yan, X.H.1
  • 14
    • 84873148192 scopus 로고    scopus 로고
    • Conventional and advanced exergetic analyses: theory and application
    • Morosuk, T., Tsatsaronis, G., Schult, M., Conventional and advanced exergetic analyses: theory and application. Arabian J. Sci. Eng. 38 (2013), 395–404.
    • (2013) Arabian J. Sci. Eng. , vol.38 , pp. 395-404
    • Morosuk, T.1    Tsatsaronis, G.2    Schult, M.3
  • 15
    • 0003526993 scopus 로고
    • Exergy Analysis Method of Energy System
    • Tsinghua University Press Beijing
    • Zhu, M.S., Exergy Analysis Method of Energy System. 1988, Tsinghua University Press, Beijing.
    • (1988)
    • Zhu, M.S.1
  • 16
    • 33847392398 scopus 로고    scopus 로고
    • Basis of Exergy Analysis for Thermodynamic Process
    • Zhejiang University Press Hangzhou
    • Wu, C.Z., Zhang, S.Z., Sun, Z.J., Basis of Exergy Analysis for Thermodynamic Process. 1999, Zhejiang University Press, Hangzhou.
    • (1999)
    • Wu, C.Z.1    Zhang, S.Z.2    Sun, Z.J.3
  • 17
    • 39149144570 scopus 로고    scopus 로고
    • Thermodynamic Analysis Method of Energy System
    • Xi'an Jiaotong University Press Xi'an
    • Fu, Q.S., Thermodynamic Analysis Method of Energy System. 2005, Xi'an Jiaotong University Press, Xi'an.
    • (2005)
    • Fu, Q.S.1
  • 18
    • 77953005013 scopus 로고    scopus 로고
    • Advanced exergy analysis for chemically reacting systems – application to a simple open gas-turbine system
    • Morosuk, T., Tsatsaronis, G., Advanced exergy analysis for chemically reacting systems – application to a simple open gas-turbine system. Int. J. Therm. 12 (2009), 105–111.
    • (2009) Int. J. Therm. , vol.12 , pp. 105-111
    • Morosuk, T.1    Tsatsaronis, G.2
  • 19
    • 84959363632 scopus 로고    scopus 로고
    • Advanced exergy analysis of an aircraft gas turbine engine: splitting exergy destructions into parts
    • Söhret, Y., Acikklap, E., Hepbasli, A., Karakoc, T.H., Advanced exergy analysis of an aircraft gas turbine engine: splitting exergy destructions into parts. Energy 90 (2015), 1219–1228.
    • (2015) Energy , vol.90 , pp. 1219-1228
    • Söhret, Y.1    Acikklap, E.2    Hepbasli, A.3    Karakoc, T.H.4
  • 20
    • 84859981629 scopus 로고    scopus 로고
    • Conventional and advanced analyses applied to a combined cycle power plant
    • Petrakopoulou, F., Tsatsaronis, G., Morosuk, T., Carassai, A., Conventional and advanced analyses applied to a combined cycle power plant. Energy 41 (2012), 146–152.
    • (2012) Energy , vol.41 , pp. 146-152
    • Petrakopoulou, F.1    Tsatsaronis, G.2    Morosuk, T.3    Carassai, A.4
  • 21
    • 84989936725 scopus 로고    scopus 로고
    • Comparison of different gas turbine cycles and advanced exergy analysis of the most effective
    • Fallah, M., Siyahi, H., Ghiasi, R.A., Mahmoudi, S.M.S., Yari, M., Rosen, M.A., Comparison of different gas turbine cycles and advanced exergy analysis of the most effective. Energy 116 (2016), 701–715.
    • (2016) Energy , vol.116 , pp. 701-715
    • Fallah, M.1    Siyahi, H.2    Ghiasi, R.A.3    Mahmoudi, S.M.S.4    Yari, M.5    Rosen, M.A.6
  • 22
    • 85053046953 scopus 로고    scopus 로고
    • Exergy splitting analysis of thermal system of supercritical thermal power units
    • Zhang, Y., Gao, Y.X., Zhen, J., Xu, Y.J., Exergy splitting analysis of thermal system of supercritical thermal power units. Boil. Technol. 48 (2017), 6–10.
    • (2017) Boil. Technol. , vol.48 , pp. 6-10
    • Zhang, Y.1    Gao, Y.X.2    Zhen, J.3    Xu, Y.J.4
  • 24
    • 85053070861 scopus 로고    scopus 로고
    • Review of exergy analysis theory development
    • Yang, X.Q., Zi, K., Review of exergy analysis theory development. J. Kunming Univ. Sci. Technol. 29 (2004), 158–162.
    • (2004) J. Kunming Univ. Sci. Technol. , vol.29 , pp. 158-162
    • Yang, X.Q.1    Zi, K.2
  • 25
    • 79952497622 scopus 로고    scopus 로고
    • Energy and exergy analyses of thermal power plants: a review
    • Kaushik, S.C., Reddy, V.S., Tyagi, S.K., Energy and exergy analyses of thermal power plants: a review. Renew. Sustain. Energy Rev. 15 (2011), 1857–1872.
    • (2011) Renew. Sustain. Energy Rev. , vol.15 , pp. 1857-1872
    • Kaushik, S.C.1    Reddy, V.S.2    Tyagi, S.K.3
  • 26
    • 84926429549 scopus 로고    scopus 로고
    • Energy and exergy analysis of thermoelectric heat pump system
    • Kaushik, S.C., Manikandan, S., Hans, R., Energy and exergy analysis of thermoelectric heat pump system. Int. J. Heat Mass Tran. 86 (2015), 843–852.
    • (2015) Int. J. Heat Mass Tran. , vol.86 , pp. 843-852
    • Kaushik, S.C.1    Manikandan, S.2    Hans, R.3
  • 27
  • 28
    • 0742302360 scopus 로고    scopus 로고
    • Sensitivity of exergy efficiencies of aerospace engines to reference environment selection
    • Etele, J., Rosen, M.A., Sensitivity of exergy efficiencies of aerospace engines to reference environment selection. Exergy An Int. J. 1 (2001), 91–99.
    • (2001) Exergy An Int. J. , vol.1 , pp. 91-99
    • Etele, J.1    Rosen, M.A.2
  • 31
    • 84867233470 scopus 로고    scopus 로고
    • Exergetic effects of some design parameters on the small turbojet engine for unmanned air vehicle applications
    • Turan, O., Exergetic effects of some design parameters on the small turbojet engine for unmanned air vehicle applications. Energy 46 (2012), 51–61.
    • (2012) Energy , vol.46 , pp. 51-61
    • Turan, O.1
  • 35
    • 84995610928 scopus 로고    scopus 로고
    • Advanced exergy analysis to evaluate the performance of a military aircraft turbojet engine (TJE) with afterburner system: splitting exergy destruction into unavoidable/avoidable and endogenous/exogenous
    • Balli, O., Advanced exergy analysis to evaluate the performance of a military aircraft turbojet engine (TJE) with afterburner system: splitting exergy destruction into unavoidable/avoidable and endogenous/exogenous. Appl. Therm. Eng. 111 (2017), 152–169.
    • (2017) Appl. Therm. Eng. , vol.111 , pp. 152-169
    • Balli, O.1
  • 37
    • 66349095374 scopus 로고    scopus 로고
    • Exergoeconomic analysis of an aircraft turbofan engine
    • Turgut, E.K., Karakoc, T.H., Hepbasli, A., Exergoeconomic analysis of an aircraft turbofan engine. Int. J. Exergy 6 (2009), 277–294.
    • (2009) Int. J. Exergy , vol.6 , pp. 277-294
    • Turgut, E.K.1    Karakoc, T.H.2    Hepbasli, A.3
  • 38
    • 76449089525 scopus 로고    scopus 로고
    • Exergy and thermoeconomic analysis of a turbofan engine during a typical commercial flight
    • Tona, C., Raviolo, P.A., Pellegrini, L.F., Oliveira, S. Jr., Exergy and thermoeconomic analysis of a turbofan engine during a typical commercial flight. Energy 35 (2010), 952–959.
    • (2010) Energy , vol.35 , pp. 952-959
    • Tona, C.1    Raviolo, P.A.2    Pellegrini, L.F.3    Oliveira, S.4
  • 39
    • 84999208560 scopus 로고    scopus 로고
    • Exergy-based sustainability analysis of a low-bypass turbofan engine: a case study for JT8D
    • Turan, O., Aydin, H., Exergy-based sustainability analysis of a low-bypass turbofan engine: a case study for JT8D. Energy Proc. 95 (2016), 499–506.
    • (2016) Energy Proc. , vol.95 , pp. 499-506
    • Turan, O.1    Aydin, H.2
  • 40
    • 84949670951 scopus 로고    scopus 로고
    • Exergy analysis of a turbofan engine for an unmanned aerial vehicle during a surveillance mission
    • Söhret, Y., Dinc, A., Karakoc, T.H., Exergy analysis of a turbofan engine for an unmanned aerial vehicle during a surveillance mission. Energy 93 (2015), 716–729.
    • (2015) Energy , vol.93 , pp. 716-729
    • Söhret, Y.1    Dinc, A.2    Karakoc, T.H.3
  • 41
    • 84971438878 scopus 로고    scopus 로고
    • Optimisation of energy and exergy of turbofan engines using genetic algorithms
    • Tai, V.C., See, P.C., Mares, C., Optimisation of energy and exergy of turbofan engines using genetic algorithms. Int. J.Sustain. Aviat. 1 (2014), 25–42.
    • (2014) Int. J.Sustain. Aviat. , vol.1 , pp. 25-42
    • Tai, V.C.1    See, P.C.2    Mares, C.3
  • 42
    • 85073903740 scopus 로고    scopus 로고
    • Advanced exergy analysis of a turbofan engine (TFE): splitting exergy destruction into unavoidable/avoidable and endogenous/exogenous
    • (Online) 2191-0332, ISSN (Print) 0334-0082
    • Balli, O., Advanced exergy analysis of a turbofan engine (TFE): splitting exergy destruction into unavoidable/avoidable and endogenous/exogenous. Int. J. Turbo Jet Engines, 2017 ISSN (Online) 2191-0332, ISSN (Print) 0334-0082 https://doi.org/10.1515/tjj-2016-0074.
    • (2017) Int. J. Turbo Jet Engines
    • Balli, O.1
  • 43
    • 0004289309 scopus 로고
    • Hypersonic Airbreathing Propulsion (AIAA Education Series)
    • American Institute of Aeronautics and Astronautics Washington D. C
    • Heiser, W.H., Pratt, D.T., Hypersonic Airbreathing Propulsion (AIAA Education Series). 1994, American Institute of Aeronautics and Astronautics, Washington D. C.
    • (1994)
    • Heiser, W.H.1    Pratt, D.T.2
  • 47
    • 0031099209 scopus 로고    scopus 로고
    • Thrust losses in hypersonic engines part 1: methodology
    • Riggins, D.W., McClinton, C.R., Vitt, P.H., Thrust losses in hypersonic engines part 1: methodology. J. Propul. Power 13 (1997), 281–287.
    • (1997) J. Propul. Power , vol.13 , pp. 281-287
    • Riggins, D.W.1    McClinton, C.R.2    Vitt, P.H.3
  • 48
    • 0031098509 scopus 로고    scopus 로고
    • Thrust losses in hypersonic engines part 2: applications
    • Riggins, D.W., McClinton, C.R., Vitt, P.H., Thrust losses in hypersonic engines part 2: applications. J. Propul. Power 13 (1997), 288–295.
    • (1997) J. Propul. Power , vol.13 , pp. 288-295
    • Riggins, D.W.1    McClinton, C.R.2    Vitt, P.H.3
  • 49
    • 38149061313 scopus 로고    scopus 로고
    • Exergy analysis of hypersonic systems: performance comparison of two different scramjet configurations at cruise conditions
    • Amati, V., Bruno, C., Simone, D., Sciubba, E., Exergy analysis of hypersonic systems: performance comparison of two different scramjet configurations at cruise conditions. Energy 33 (2008), 116–129.
    • (2008) Energy , vol.33 , pp. 116-129
    • Amati, V.1    Bruno, C.2    Simone, D.3    Sciubba, E.4
  • 50
    • 33847408422 scopus 로고    scopus 로고
    • Development of a novel modular simulation tool for the exergy analysis of a scramjet engine at cruise condition
    • Amati, V., Bruno, C., Simone, D., Sciubba, E., Development of a novel modular simulation tool for the exergy analysis of a scramjet engine at cruise condition. Int. J. Therm. 9 (2006), 1–11.
    • (2006) Int. J. Therm. , vol.9 , pp. 1-11
    • Amati, V.1    Bruno, C.2    Simone, D.3    Sciubba, E.4
  • 51
    • 84986206695 scopus 로고    scopus 로고
    • Graphical exergy analysis for a scramjet thermodynamic performance evaluation
    • Zhang, D., Cheng, K.L., Zhang, S.L., Qin, J., Bao, W., Graphical exergy analysis for a scramjet thermodynamic performance evaluation. Int. J. Exergy 21 (2016), 136–156.
    • (2016) Int. J. Exergy , vol.21 , pp. 136-156
    • Zhang, D.1    Cheng, K.L.2    Zhang, S.L.3    Qin, J.4    Bao, W.5
  • 52
    • 85019352840 scopus 로고    scopus 로고
    • Analysis of potential usage for heat of scramjet wall
    • Li, X.C., Wang, Z.W., Analysis of potential usage for heat of scramjet wall. J. Propuls. Technol. 38 (2017), 275–280.
    • (2017) J. Propuls. Technol. , vol.38 , pp. 275-280
    • Li, X.C.1    Wang, Z.W.2
  • 53
    • 85015020484 scopus 로고    scopus 로고
    • Exergy analysis of integrated TEG and regenerative cooling system for power generation from the scramjet cooling heat
    • Li, X.C., Wang, Z.W., Exergy analysis of integrated TEG and regenerative cooling system for power generation from the scramjet cooling heat. Aero. Sci. Technol. 66 (2017), 12–19.
    • (2017) Aero. Sci. Technol. , vol.66 , pp. 12-19
    • Li, X.C.1    Wang, Z.W.2
  • 54
    • 0036867812 scopus 로고    scopus 로고
    • Work potential perspective of engine component performance
    • Roth, B.A., Work potential perspective of engine component performance. J. Propul. Power 18 (2002), 1183–1190.
    • (2002) J. Propul. Power , vol.18 , pp. 1183-1190
    • Roth, B.A.1
  • 55
    • 0037227820 scopus 로고    scopus 로고
    • Method for propulsion technology impact evaluation via thermodynamics work potential
    • Roth, B.A., Mavris, D.N., Method for propulsion technology impact evaluation via thermodynamics work potential. J. Aircraft 40 (2003), 56–61.
    • (2003) J. Aircraft , vol.40 , pp. 56-61
    • Roth, B.A.1    Mavris, D.N.2
  • 57
    • 0037224024 scopus 로고    scopus 로고
    • Proposed system-level multidisciplinary analysis technique based on exergy methods
    • Moorhouse, D.J., Proposed system-level multidisciplinary analysis technique based on exergy methods. J. Aircraft 40 (2003), 11–15.
    • (2003) J. Aircraft , vol.40 , pp. 11-15
    • Moorhouse, D.J.1
  • 58
    • 0037224025 scopus 로고    scopus 로고
    • Exergy approach to decision-based design of integrated aircraft thermal systems
    • Figliola, R.H., Tipton, R., Li, H., Exergy approach to decision-based design of integrated aircraft thermal systems. J. Aircraft 40 (2003), 49–55.
    • (2003) J. Aircraft , vol.40 , pp. 49-55
    • Figliola, R.H.1    Tipton, R.2    Li, H.3
  • 59
    • 85020414168 scopus 로고    scopus 로고
    • Integration of exergy analysis into model-based design and evaluation of aircraft environmental control systems
    • Bender, D., Integration of exergy analysis into model-based design and evaluation of aircraft environmental control systems. Energy 137 (2017), 739–751.
    • (2017) Energy , vol.137 , pp. 739-751
    • Bender, D.1
  • 61
    • 1642525065 scopus 로고    scopus 로고
    • The exergy of lift and aircraft exergy flow diagrams
    • Paulus, D.M., Gaggioli, R.A., The exergy of lift and aircraft exergy flow diagrams. Int. J. Therm. 6 (2003), 149–156.
    • (2003) Int. J. Therm. , vol.6 , pp. 149-156
    • Paulus, D.M.1    Gaggioli, R.A.2
  • 62
    • 0035928729 scopus 로고    scopus 로고
    • Integrative thermodynamics optimization of the environmental control system of an aircraft
    • Vargas, J.V.C., Bejan, A., Integrative thermodynamics optimization of the environmental control system of an aircraft. Int. J. Heat Mass Tran. 44 (2001), 3907–3917.
    • (2001) Int. J. Heat Mass Tran. , vol.44 , pp. 3907-3917
    • Vargas, J.V.C.1    Bejan, A.2
  • 67
    • 84929208997 scopus 로고    scopus 로고
    • Exergy-based formulation for aircraft aeropropulsive performance assessment: theoretical development
    • Arntz, A., Atinault, O., Merlen, A., Exergy-based formulation for aircraft aeropropulsive performance assessment: theoretical development. AIAA J. 53 (2015), 1627–1639.
    • (2015) AIAA J. , vol.53 , pp. 1627-1639
    • Arntz, A.1    Atinault, O.2    Merlen, A.3
  • 70
    • 84960380097 scopus 로고    scopus 로고
    • The design of future passenger aircraft – the environmental and fuel price challenges
    • Jupp, J.A., The design of future passenger aircraft – the environmental and fuel price challenges. Aeronaut. J. 120 (2016), 37–60.
    • (2016) Aeronaut. J. , vol.120 , pp. 37-60
    • Jupp, J.A.1
  • 71
    • 0033297678 scopus 로고    scopus 로고
    • Role for Exergy Analysis and Optimization in Aircraft Energy-system Design
    • American Society of Mechanical Engineers Advanced Energy Systems Division Publication AES 39
    • Bejan, A., Role for Exergy Analysis and Optimization in Aircraft Energy-system Design. 1999, American Society of Mechanical Engineers, 209–217 Advanced Energy Systems Division Publication AES 39.
    • (1999) , pp. 209-217
    • Bejan, A.1
  • 72
    • 0001852173 scopus 로고    scopus 로고
    • The need for exergy analysis and thermodynamic optimization in aircraft development
    • Bejan, A., Siems, D.L., The need for exergy analysis and thermodynamic optimization in aircraft development. Exergy An Int. J. 1 (2001), 14–24.
    • (2001) Exergy An Int. J. , vol.1 , pp. 14-24
    • Bejan, A.1    Siems, D.L.2
  • 73
    • 33645660334 scopus 로고    scopus 로고
    • A Study of Morphing wing Effectiveness in Fighter Aircraft Using Exergy Analysis and Global Optimization Techniques
    • M.S. thesis Virginia Polytechnic Institute and State University Blacksburg
    • Butt, J., A Study of Morphing wing Effectiveness in Fighter Aircraft Using Exergy Analysis and Global Optimization Techniques. M.S. thesis, 2005, Virginia Polytechnic Institute and State University, Blacksburg.
    • (2005)
    • Butt, J.1
  • 74
    • 35748941507 scopus 로고    scopus 로고
    • Exergy Methods for the Generic Analysis and Optimization of Hypersonic Vehicle Concepts
    • M.S. thesis Virginia Polytechnic Institute and State University Blacksburg
    • Markell, K.C., Exergy Methods for the Generic Analysis and Optimization of Hypersonic Vehicle Concepts. M.S. thesis, 2006, Virginia Polytechnic Institute and State University, Blacksburg.
    • (2006)
    • Markell, K.C.1
  • 75
    • 34347226910 scopus 로고    scopus 로고
    • Exergy Methods for the mission Level Analysis and Optimization of Generic Hypersonic Vehicle
    • M.S. thesis Virginia Polytechnic Institute and State University Blacksburg
    • Brewer, K.M., Exergy Methods for the mission Level Analysis and Optimization of Generic Hypersonic Vehicle. M.S. thesis, 2006, Virginia Polytechnic Institute and State University, Blacksburg.
    • (2006)
    • Brewer, K.M.1
  • 77
    • 34250833249 scopus 로고    scopus 로고
    • Utilizing CFD-based exergy calculations in the design/optimization of a complete aircraft system
    • AIAA 2007-1130
    • Alabi, K., Ladeinde, F., Utilizing CFD-based exergy calculations in the design/optimization of a complete aircraft system. 45th AIAA Aerospace Sciences Meeting and Exhibit, Reno, Nevada, 2007 AIAA 2007-1130.
    • (2007) 45th AIAA Aerospace Sciences Meeting and Exhibit, Reno, Nevada
    • Alabi, K.1    Ladeinde, F.2
  • 79
    • 33748077798 scopus 로고    scopus 로고
    • Methodology for performance analysis of aerospace vehicles using the laws of thermodynamics
    • Riggins, D.W., Taylor, T., Moorhouse, D.J., Methodology for performance analysis of aerospace vehicles using the laws of thermodynamics. J. Aircraft 43 (2006), 953–963.
    • (2006) J. Aircraft , vol.43 , pp. 953-963
    • Riggins, D.W.1    Taylor, T.2    Moorhouse, D.J.3
  • 81
    • 77953157750 scopus 로고    scopus 로고
    • Characterization of aerospace vehicle performance and mission analysis using thermodynamic availability
    • Riggins, D.W., Moorhouse, D.J., Camberos, J.A., Characterization of aerospace vehicle performance and mission analysis using thermodynamic availability. J. Aircraft 47 (2010), 904–916.
    • (2010) J. Aircraft , vol.47 , pp. 904-916
    • Riggins, D.W.1    Moorhouse, D.J.2    Camberos, J.A.3
  • 82
    • 84878339253 scopus 로고    scopus 로고
    • Mission-integrated exergy analysis for hypersonic vehicles: methodology and application
    • Riggins, D.W., Camberos, J.A., Wolff, M., Bowcutt, K., Mission-integrated exergy analysis for hypersonic vehicles: methodology and application. J. Propul. Power 29 (2013), 610–620.
    • (2013) J. Propul. Power , vol.29 , pp. 610-620
    • Riggins, D.W.1    Camberos, J.A.2    Wolff, M.3    Bowcutt, K.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.