메뉴 건너뛰기




Volumn 48, Issue 1, 2019, Pages 36-55

Machine learning research that matters for music creation: A case study

Author keywords

Applied machine learning; computational creativity; folk music; music generation

Indexed keywords


EID: 85053055911     PISSN: 09298215     EISSN: 17445027     Source Type: Journal    
DOI: 10.1080/09298215.2018.1515233     Document Type: Article
Times cited : (83)

References (50)
  • 1
    • 84923902093 scopus 로고    scopus 로고
    • Navigating the landscape of computer aided algorithmic composition systems: A definition, seven descriptors, and a lexicon of systems and research. Barcelona, Spain
    • Ariza, C., (2005). Navigating the landscape of computer aided algorithmic composition systems: A definition, seven descriptors, and a lexicon of systems and research. In Proc. int. computer music conf., Barcelona, Spain
    • (2005) Proc. int. computer music conf.
    • Ariza, C.1
  • 3
    • 0033339723 scopus 로고    scopus 로고
    • Life with GenJam: Interacting with a musical IGA. Tokyo, Japan (3, 652–656
    • Biles, J. A., (1999). Life with GenJam: Interacting with a musical IGA. In Int. conf systems, man, cybernetics, Tokyo, Japan (Vol. 3, pp. 652–656)
    • (1999) Int. conf systems, man, cybernetics
    • Biles, J.A.1
  • 4
    • 84867129058 scopus 로고    scopus 로고
    • Modeling temporal dependencies high-dimensional sequences: Application to polyphonic music generation and transcription. Edinburgh, Scotland. (1159–1166
    • Boulanger-Lewandowski, N., Bengio, Y., & Vincent, P., (2012). Modeling temporal dependencies in high-dimensional sequences: Application to polyphonic music generation and transcription. In Proc. int. conf. machine learn, Edinburgh, Scotland. (pp. 1159–1166)
    • (2012) Proc. int. conf. machine learn
    • Boulanger-Lewandowski, N.1    Bengio, Y.2    Vincent, P.3
  • 6
    • 85059198470 scopus 로고    scopus 로고
    • Deep learning techniques for music generationa survey
    • Briot, J.-P., Hadjeres, G., & Pachet, F., (2017). Deep learning techniques for music generation–a survey. arXiv:1709.01620v1
    • (2017)
    • Briot, J.-P.1    Hadjeres, G.2    Pachet, F.3
  • 8
    • 0003661345 scopus 로고    scopus 로고
    • Rhythm and timing music. (2nd ed. 473–500). San Diego, CA: Academic Press
    • Clarke, E., (1999). Rhythm and timing in music. In The psychology of music (2nd ed. pp. 473–500). San Diego, CA: Academic Press
    • (1999) The psychology of music
    • Clarke, E.1
  • 9
    • 71049182323 scopus 로고    scopus 로고
    • Musical form and algorithmic composition
    • Collins, N., (2009). Musical form and algorithmic composition. Contemporary Music Review, 28(1), 103–114. doi: 10.1080/07494460802664064
    • (2009) Contemporary Music Review , vol.28 , Issue.1 , pp. 103-114
    • Collins, N.1
  • 10
    • 85005959706 scopus 로고    scopus 로고
    • A funny thing happened on the way to the formula: Algorithmic composition for musical theatre
    • Collins, N., (2016). A funny thing happened on the way to the formula: Algorithmic composition for musical theatre. Computer Music Journal, 40(3), 41–57. doi: 10.1162/COMJ_a_00373
    • (2016) Computer Music Journal , vol.40 , Issue.3 , pp. 41-57
    • Collins, N.1
  • 11
    • 85020909760 scopus 로고    scopus 로고
    • Computer-generated stylistic compositions with long-term repetitive and phrasal structure
    • Collins, T., & Laney, R., (2017). Computer-generated stylistic compositions with long-term repetitive and phrasal structure. Journal of Creative Music Systems, 1(2). http://jcms.org.uk/issues/Vol1Issue2/computer-generated-stylistic-compositions/computer-generated-stylistic-compositions.html doi: 10.5920/JCMS.2017.02
    • (2017) Journal of Creative Music Systems , vol.1 , Issue.2
    • Collins, T.1    Laney, R.2
  • 14
    • 85059189412 scopus 로고    scopus 로고
    • A machine learning approach to musical style recognition. Thessaloniki, Greece (344–347
    • Dannenberg, R. B., Thom, B., & Watson, D., (1997). A machine learning approach to musical style recognition. In Proc. int. computer music conf., Thessaloniki, Greece (pp. 344–347)
    • (1997) Proc. int. computer music conf.
    • Dannenberg, R.B.1    Thom, B.2    Watson, D.3
  • 16
    • 77951200774 scopus 로고    scopus 로고
    • Warning: Statistical benchmarking is addictive. Kicking the habit in machine learning
    • Drummond, C., & Japkowicz, N., (2010). Warning: Statistical benchmarking is addictive. Kicking the habit in machine learning. Journal of Experimental & Theoretical Artificial Intelligence, 22, 67–80. doi: 10.1080/09528130903010295
    • (2010) Journal of Experimental & Theoretical Artificial Intelligence , vol.22 , pp. 67-80
    • Drummond, C.1    Japkowicz, N.2
  • 17
    • 84888322062 scopus 로고    scopus 로고
    • AI methods in algorithmic composition: A comprehensive survey
    • Fernández, J. D., & Vico, F., (2013). AI methods in algorithmic composition: A comprehensive survey. Journal of Artificial Intelligence Research, 48(1), 513–582. doi: 10.1613/jair.3908
    • (2013) Journal of Artificial Intelligence Research , vol.48 , Issue.1 , pp. 513-582
    • Fernández, J.D.1    Vico, F.2
  • 19
    • 85048394215 scopus 로고    scopus 로고
    • DeepBach: A steerable model for Bach chorales generation. Sydney, Australia (1362–1371
    • Hadjeres, G., Pachet, F., & Nielsen, F., (2017). DeepBach: A steerable model for Bach chorales generation. In Proc. int. conf. machine learning, Sydney, Australia (pp. 1362–1371)
    • (2017) Proc. int. conf. machine learning
    • Hadjeres, G.1    Pachet, F.2    Nielsen, F.3
  • 20
    • 0035396750 scopus 로고    scopus 로고
    • Variable neighborhood decomposition search
    • Hansen, P., Mladenović, N., & Perez-Britos, D., (2001). Variable neighborhood decomposition search. Journal of Heuristics, 7(4), 335–350. doi: 10.1023/A:1011336210885
    • (2001) Journal of Heuristics , vol.7 , Issue.4 , pp. 335-350
    • Hansen, P.1    Mladenović, N.2    Perez-Britos, D.3
  • 21
    • 85012060691 scopus 로고    scopus 로고
    • Morpheus: Automatic music generation with recurrent pattern constraints and tension proles. Marina Bay Sands, Singapore
    • Herremans, D., & Chew, E., (2016a). Morpheus: Automatic music generation with recurrent pattern constraints and tension proles. In Proc. IEEE TENCON, Marina Bay Sands, Singapore
    • (2016) Proc. IEEE TENCON
    • Herremans, D.1    Chew, E.2
  • 23
    • 85028573277 scopus 로고    scopus 로고
    • Morpheus: Generating structured music with constrained patterns and tension
    • Herremans, D., & Chew, E., (2018). Morpheus: Generating structured music with constrained patterns and tension. IEEE Transactions on Affective Computing. https://ieeexplore.ieee.org/document/8007229/
    • (2018) IEEE Transactions on Affective Computing
    • Herremans, D.1    Chew, E.2
  • 24
    • 85030665111 scopus 로고    scopus 로고
    • A functional taxonomy of music generation systems
    • Herremans, D., Chuan, C.-H., & Chew, E., (2017). A functional taxonomy of music generation systems. ACM Computing Surveys, 50(5), 69:1–69:30. doi: 10.1145/3108242
    • (2017) ACM Computing Surveys , vol.50 , Issue.5 , pp. 69:1-69:30
    • Herremans, D.1    Chuan, C.-H.2    Chew, E.3
  • 25
    • 84935016149 scopus 로고    scopus 로고
    • Generating structured music for bagana using quality metrics based on markov models
    • Herremans, D., Weisser, S., Sörensen, K., & Conklin, D., (2015). Generating structured music for bagana using quality metrics based on markov models. Expert Systems with Applications, 42(21), 7424–7435. doi: 10.1016/j.eswa.2015.05.043
    • (2015) Expert Systems with Applications , vol.42 , Issue.21 , pp. 7424-7435
    • Herremans, D.1    Weisser, S.2    Sörensen, K.3    Conklin, D.4
  • 26
    • 0040880253 scopus 로고
    • HARMONET: A neural net for harmonizing chorales the style of J. S. Bach. Denver, Colorado (267–274
    • Hild, H., Feulner, J., & Menzel, W., (1992). HARMONET: A neural net for harmonizing chorales in the style of J. S. Bach. In Neural information processing systems, Denver, Colorado (pp. 267–274)
    • (1992) Neural information processing systems
    • Hild, H.1    Feulner, J.2    Menzel, W.3
  • 29
    • 85059187097 scopus 로고    scopus 로고
    • Generating music by fine-tuning recurrent neural networks with reinforcement learning. Barcelona, Spain
    • Jaques, N., Gu, S., Turner, R. E., & Eck, D., (2016). Generating music by fine-tuning recurrent neural networks with reinforcement learning. In Deep reinforcement learning workshop, NIPS, Barcelona, Spain
    • (2016) Deep reinforcement learning workshop, NIPS
    • Jaques, N.1    Gu, S.2    Turner, R.E.3    Eck, D.4
  • 30
    • 85048429055 scopus 로고    scopus 로고
    • Sequence tutor: Conservative fine-tuning of sequence generation models with kl-control. Sydney, Australia
    • Jaques, N., Gu, S., Turner, R. E., & Eck, D., (2017). Sequence tutor: Conservative fine-tuning of sequence generation models with kl-control. In Proc. int. conf. machine learning, Sydney, Australia
    • (2017) Proc. int. conf. machine learning
    • Jaques, N.1    Gu, S.2    Turner, R.E.3    Eck, D.4
  • 31
    • 85032801688 scopus 로고    scopus 로고
    • Has computational creativity successfully made it “Beyond the Fence” in musical theatre?
    • Jordanous, A., (2017). Has computational creativity successfully made it “Beyond the Fence” in musical theatre? Connection Science, 29(4), 350–386. doi: 10.1080/09540091.2017.1345857
    • (2017) Connection Science , vol.29 , Issue.4 , pp. 350-386
    • Jordanous, A.1
  • 33
    • 84873595823 scopus 로고    scopus 로고
    • Approximate note transcription for the improved identification of difficult chords. Utrecht, Netherlands
    • Mauch, M., & Dixon, S., (2010). Approximate note transcription for the improved identification of difficult chords. In Proc. int. soc. music info. retrieval, Utrecht, Netherlands
    • (2010) Proc. int. soc. music info. retrieval
    • Mauch, M.1    Dixon, S.2
  • 34
    • 84942364096 scopus 로고    scopus 로고
    • Music analysis and point-set compression
    • Meredith, D., (2015). Music analysis and point-set compression. Journal of New Music Research, 44(3), 245–270. doi: 10.1080/09298215.2015.1045003
    • (2015) Journal of New Music Research , vol.44 , Issue.3 , pp. 245-270
    • Meredith, D.1
  • 40
    • 84990379670 scopus 로고    scopus 로고
    • Motivations and methodologies for automation of the compositional process
    • Pearce, M., Meredith, D., & Wiggins, G., (2002). Motivations and methodologies for automation of the compositional process. Musicae Scientiae, 6(2), 119–147. doi: 10.1177/102986490200600203
    • (2002) Musicae Scientiae , vol.6 , Issue.2 , pp. 119-147
    • Pearce, M.1    Meredith, D.2    Wiggins, G.3
  • 42
    • 84859735323 scopus 로고    scopus 로고
    • Melody extraction from polyphonic music signals using pitch contour characteristics
    • Salamon, J., & Gómez, E., (2012). Melody extraction from polyphonic music signals using pitch contour characteristics. IEEE Transactions on Audio, Speech, and Language Processing, 20(6), 1759–1770. doi: 10.1109/TASL.2012.2188515
    • (2012) IEEE Transactions on Audio, Speech, and Language Processing , vol.20 , Issue.6 , pp. 1759-1770
    • Salamon, J.1    Gómez, E.2
  • 43
    • 84907047334 scopus 로고    scopus 로고
    • Music information retrieval: Recent developments and applications
    • Schedl, M., Gomez, E., & Urbano, J., (2014). Music information retrieval: Recent developments and applications. Foundations and Trends in Information Retrieval, 8(2–3), 127–261. doi: 10.1561/1500000042
    • (2014) Foundations and Trends in Information Retrieval , vol.8 , Issue.2-3 , pp. 127-261
    • Schedl, M.1    Gomez, E.2    Urbano, J.3
  • 44
    • 84907449171 scopus 로고    scopus 로고
    • A simple method to determine if a music information retrieval system is a “horse”
    • Sturm, B. L., (2014). A simple method to determine if a music information retrieval system is a “horse”. IEEE Transactions on Multimedia, 16(6), 1636–1644. doi: 10.1109/TMM.2014.2330697
    • (2014) IEEE Transactions on Multimedia , vol.16 , Issue.6 , pp. 1636-1644
    • Sturm, B.L.1
  • 45
    • 85059183390 scopus 로고    scopus 로고
    • What do these 5,599,881 parameters mean? an analysis of a specific lstm music transcription model, starting with the 70,281 parameters of its softmax layer. Salamanca, Spain
    • Sturm, B. L., (2018). What do these 5,599,881 parameters mean? an analysis of a specific lstm music transcription model, starting with the 70,281 parameters of its softmax layer. In Proc. music metacreation workshop of ICCC, Salamanca, Spain
    • (2018) Proc. music metacreation workshop of ICCC
    • Sturm, B.L.1
  • 46
    • 85055477089 scopus 로고    scopus 로고
    • Taking the models back to music practice: Evaluating generative transcription models built using deep learning
    • Sturm, B. L., & Ben-Tal, O., (2017). Taking the models back to music practice: Evaluating generative transcription models built using deep learning. Journal of Creative Music Systems, 2(1), 1–29. doi: 10.5920/JCMS.2017.09
    • (2017) Journal of Creative Music Systems , vol.2 , Issue.1 , pp. 1-29
    • Sturm, B.L.1    Ben-Tal, O.2
  • 50
    • 84867137280 scopus 로고    scopus 로고
    • Machine learning that matters. Edinburgh, Scotland (529–536
    • Wagstaff, K. L., (2012). Machine learning that matters. In Proc. int. conf. machine learning, Edinburgh, Scotland (pp. 529–536)
    • (2012) Proc. int. conf. machine learning
    • Wagstaff, K.L.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.