-
1
-
-
84923902093
-
-
Navigating the landscape of computer aided algorithmic composition systems: A definition, seven descriptors, and a lexicon of systems and research. Barcelona, Spain
-
Ariza, C., (2005). Navigating the landscape of computer aided algorithmic composition systems: A definition, seven descriptors, and a lexicon of systems and research. In Proc. int. computer music conf., Barcelona, Spain
-
(2005)
Proc. int. computer music conf.
-
-
Ariza, C.1
-
2
-
-
27344458404
-
On prediction using variable order markov models
-
Begleiter, R., El-Yaniv, R., & Yona, G., (2004). On prediction using variable order markov models. Journal of Artificial Intelligence Research, 22, 385–421. doi: 10.1613/jair.1491
-
(2004)
Journal of Artificial Intelligence Research
, vol.22
, pp. 385-421
-
-
Begleiter, R.1
El-Yaniv, R.2
Yona, G.3
-
3
-
-
0033339723
-
-
Life with GenJam: Interacting with a musical IGA. Tokyo, Japan (3, 652–656
-
Biles, J. A., (1999). Life with GenJam: Interacting with a musical IGA. In Int. conf systems, man, cybernetics, Tokyo, Japan (Vol. 3, pp. 652–656)
-
(1999)
Int. conf systems, man, cybernetics
-
-
Biles, J.A.1
-
4
-
-
84867129058
-
-
Modeling temporal dependencies high-dimensional sequences: Application to polyphonic music generation and transcription. Edinburgh, Scotland. (1159–1166
-
Boulanger-Lewandowski, N., Bengio, Y., & Vincent, P., (2012). Modeling temporal dependencies in high-dimensional sequences: Application to polyphonic music generation and transcription. In Proc. int. conf. machine learn, Edinburgh, Scotland. (pp. 1159–1166)
-
(2012)
Proc. int. conf. machine learn
-
-
Boulanger-Lewandowski, N.1
Bengio, Y.2
Vincent, P.3
-
6
-
-
85059198470
-
-
Deep learning techniques for music generationa survey
-
Briot, J.-P., Hadjeres, G., & Pachet, F., (2017). Deep learning techniques for music generation–a survey. arXiv:1709.01620v1
-
(2017)
-
-
Briot, J.-P.1
Hadjeres, G.2
Pachet, F.3
-
8
-
-
0003661345
-
-
Rhythm and timing music. (2nd ed. 473–500). San Diego, CA: Academic Press
-
Clarke, E., (1999). Rhythm and timing in music. In The psychology of music (2nd ed. pp. 473–500). San Diego, CA: Academic Press
-
(1999)
The psychology of music
-
-
Clarke, E.1
-
9
-
-
71049182323
-
Musical form and algorithmic composition
-
Collins, N., (2009). Musical form and algorithmic composition. Contemporary Music Review, 28(1), 103–114. doi: 10.1080/07494460802664064
-
(2009)
Contemporary Music Review
, vol.28
, Issue.1
, pp. 103-114
-
-
Collins, N.1
-
10
-
-
85005959706
-
A funny thing happened on the way to the formula: Algorithmic composition for musical theatre
-
Collins, N., (2016). A funny thing happened on the way to the formula: Algorithmic composition for musical theatre. Computer Music Journal, 40(3), 41–57. doi: 10.1162/COMJ_a_00373
-
(2016)
Computer Music Journal
, vol.40
, Issue.3
, pp. 41-57
-
-
Collins, N.1
-
11
-
-
85020909760
-
Computer-generated stylistic compositions with long-term repetitive and phrasal structure
-
Collins, T., & Laney, R., (2017). Computer-generated stylistic compositions with long-term repetitive and phrasal structure. Journal of Creative Music Systems, 1(2). http://jcms.org.uk/issues/Vol1Issue2/computer-generated-stylistic-compositions/computer-generated-stylistic-compositions.html doi: 10.5920/JCMS.2017.02
-
(2017)
Journal of Creative Music Systems
, vol.1
, Issue.2
-
-
Collins, T.1
Laney, R.2
-
12
-
-
85005969670
-
-
The beyond the fence musical and computer says show documentary. Paris, France, …
-
Colton, S., Llano, M. T., Hepworth, R., Charnley, J., Gale, C. V., Baron, A., … Lloyd, J. R., (2016). The beyond the fence musical and computer says show documentary. In Proc. int. conf. comp. creativity, Paris, France
-
(2016)
Proc. int. conf. comp. creativity
-
-
Colton, S.1
Llano, M.T.2
Hepworth, R.3
Charnley, J.4
Gale, C.V.5
Baron, A.6
Lloyd, J.R.7
-
14
-
-
85059189412
-
-
A machine learning approach to musical style recognition. Thessaloniki, Greece (344–347
-
Dannenberg, R. B., Thom, B., & Watson, D., (1997). A machine learning approach to musical style recognition. In Proc. int. computer music conf., Thessaloniki, Greece (pp. 344–347)
-
(1997)
Proc. int. computer music conf.
-
-
Dannenberg, R.B.1
Thom, B.2
Watson, D.3
-
16
-
-
77951200774
-
Warning: Statistical benchmarking is addictive. Kicking the habit in machine learning
-
Drummond, C., & Japkowicz, N., (2010). Warning: Statistical benchmarking is addictive. Kicking the habit in machine learning. Journal of Experimental & Theoretical Artificial Intelligence, 22, 67–80. doi: 10.1080/09528130903010295
-
(2010)
Journal of Experimental & Theoretical Artificial Intelligence
, vol.22
, pp. 67-80
-
-
Drummond, C.1
Japkowicz, N.2
-
17
-
-
84888322062
-
AI methods in algorithmic composition: A comprehensive survey
-
Fernández, J. D., & Vico, F., (2013). AI methods in algorithmic composition: A comprehensive survey. Journal of Artificial Intelligence Research, 48(1), 513–582. doi: 10.1613/jair.3908
-
(2013)
Journal of Artificial Intelligence Research
, vol.48
, Issue.1
, pp. 513-582
-
-
Fernández, J.D.1
Vico, F.2
-
18
-
-
84979010616
-
LSTM: A search space odyssey
-
Greff, K., Srivastava, R. K., Koutník, J., Steunebrink, B. R., & Schmidhuber, J., (2016). LSTM: A search space odyssey. IEEE Transactions on Neural Networks and Learning Systems, 28(10), 2222–2232. doi: 10.1109/TNNLS.2016.2582924
-
(2016)
IEEE Transactions on Neural Networks and Learning Systems
, vol.28
, Issue.10
, pp. 2222-2232
-
-
Greff, K.1
Srivastava, R.K.2
Koutník, J.3
Steunebrink, B.R.4
Schmidhuber, J.5
-
19
-
-
85048394215
-
-
DeepBach: A steerable model for Bach chorales generation. Sydney, Australia (1362–1371
-
Hadjeres, G., Pachet, F., & Nielsen, F., (2017). DeepBach: A steerable model for Bach chorales generation. In Proc. int. conf. machine learning, Sydney, Australia (pp. 1362–1371)
-
(2017)
Proc. int. conf. machine learning
-
-
Hadjeres, G.1
Pachet, F.2
Nielsen, F.3
-
20
-
-
0035396750
-
Variable neighborhood decomposition search
-
Hansen, P., Mladenović, N., & Perez-Britos, D., (2001). Variable neighborhood decomposition search. Journal of Heuristics, 7(4), 335–350. doi: 10.1023/A:1011336210885
-
(2001)
Journal of Heuristics
, vol.7
, Issue.4
, pp. 335-350
-
-
Hansen, P.1
Mladenović, N.2
Perez-Britos, D.3
-
21
-
-
85012060691
-
-
Morpheus: Automatic music generation with recurrent pattern constraints and tension proles. Marina Bay Sands, Singapore
-
Herremans, D., & Chew, E., (2016a). Morpheus: Automatic music generation with recurrent pattern constraints and tension proles. In Proc. IEEE TENCON, Marina Bay Sands, Singapore
-
(2016)
Proc. IEEE TENCON
-
-
Herremans, D.1
Chew, E.2
-
23
-
-
85028573277
-
Morpheus: Generating structured music with constrained patterns and tension
-
Herremans, D., & Chew, E., (2018). Morpheus: Generating structured music with constrained patterns and tension. IEEE Transactions on Affective Computing. https://ieeexplore.ieee.org/document/8007229/
-
(2018)
IEEE Transactions on Affective Computing
-
-
Herremans, D.1
Chew, E.2
-
24
-
-
85030665111
-
A functional taxonomy of music generation systems
-
Herremans, D., Chuan, C.-H., & Chew, E., (2017). A functional taxonomy of music generation systems. ACM Computing Surveys, 50(5), 69:1–69:30. doi: 10.1145/3108242
-
(2017)
ACM Computing Surveys
, vol.50
, Issue.5
, pp. 69:1-69:30
-
-
Herremans, D.1
Chuan, C.-H.2
Chew, E.3
-
25
-
-
84935016149
-
Generating structured music for bagana using quality metrics based on markov models
-
Herremans, D., Weisser, S., Sörensen, K., & Conklin, D., (2015). Generating structured music for bagana using quality metrics based on markov models. Expert Systems with Applications, 42(21), 7424–7435. doi: 10.1016/j.eswa.2015.05.043
-
(2015)
Expert Systems with Applications
, vol.42
, Issue.21
, pp. 7424-7435
-
-
Herremans, D.1
Weisser, S.2
Sörensen, K.3
Conklin, D.4
-
26
-
-
0040880253
-
-
HARMONET: A neural net for harmonizing chorales the style of J. S. Bach. Denver, Colorado (267–274
-
Hild, H., Feulner, J., & Menzel, W., (1992). HARMONET: A neural net for harmonizing chorales in the style of J. S. Bach. In Neural information processing systems, Denver, Colorado (pp. 267–274)
-
(1992)
Neural information processing systems
-
-
Hild, H.1
Feulner, J.2
Menzel, W.3
-
29
-
-
85059187097
-
-
Generating music by fine-tuning recurrent neural networks with reinforcement learning. Barcelona, Spain
-
Jaques, N., Gu, S., Turner, R. E., & Eck, D., (2016). Generating music by fine-tuning recurrent neural networks with reinforcement learning. In Deep reinforcement learning workshop, NIPS, Barcelona, Spain
-
(2016)
Deep reinforcement learning workshop, NIPS
-
-
Jaques, N.1
Gu, S.2
Turner, R.E.3
Eck, D.4
-
30
-
-
85048429055
-
-
Sequence tutor: Conservative fine-tuning of sequence generation models with kl-control. Sydney, Australia
-
Jaques, N., Gu, S., Turner, R. E., & Eck, D., (2017). Sequence tutor: Conservative fine-tuning of sequence generation models with kl-control. In Proc. int. conf. machine learning, Sydney, Australia
-
(2017)
Proc. int. conf. machine learning
-
-
Jaques, N.1
Gu, S.2
Turner, R.E.3
Eck, D.4
-
31
-
-
85032801688
-
Has computational creativity successfully made it “Beyond the Fence” in musical theatre?
-
Jordanous, A., (2017). Has computational creativity successfully made it “Beyond the Fence” in musical theatre? Connection Science, 29(4), 350–386. doi: 10.1080/09540091.2017.1345857
-
(2017)
Connection Science
, vol.29
, Issue.4
, pp. 350-386
-
-
Jordanous, A.1
-
33
-
-
84873595823
-
-
Approximate note transcription for the improved identification of difficult chords. Utrecht, Netherlands
-
Mauch, M., & Dixon, S., (2010). Approximate note transcription for the improved identification of difficult chords. In Proc. int. soc. music info. retrieval, Utrecht, Netherlands
-
(2010)
Proc. int. soc. music info. retrieval
-
-
Mauch, M.1
Dixon, S.2
-
34
-
-
84942364096
-
Music analysis and point-set compression
-
Meredith, D., (2015). Music analysis and point-set compression. Journal of New Music Research, 44(3), 245–270. doi: 10.1080/09298215.2015.1045003
-
(2015)
Journal of New Music Research
, vol.44
, Issue.3
, pp. 245-270
-
-
Meredith, D.1
-
35
-
-
85059153847
-
-
Method of pattern discovery., (0211914.7
-
Meredith, D., Wiggins, G. A., & Lemström, K., (2002). Method of pattern discovery. PCT patent application number PCT/GB02/02430, UK patent application, (0211914.7)
-
(2002)
PCT patent application number PCT/GB02/02430, UK patent application
-
-
Meredith, D.1
Wiggins, G.A.2
Lemström, K.3
-
40
-
-
84990379670
-
Motivations and methodologies for automation of the compositional process
-
Pearce, M., Meredith, D., & Wiggins, G., (2002). Motivations and methodologies for automation of the compositional process. Musicae Scientiae, 6(2), 119–147. doi: 10.1177/102986490200600203
-
(2002)
Musicae Scientiae
, vol.6
, Issue.2
, pp. 119-147
-
-
Pearce, M.1
Meredith, D.2
Wiggins, G.3
-
42
-
-
84859735323
-
Melody extraction from polyphonic music signals using pitch contour characteristics
-
Salamon, J., & Gómez, E., (2012). Melody extraction from polyphonic music signals using pitch contour characteristics. IEEE Transactions on Audio, Speech, and Language Processing, 20(6), 1759–1770. doi: 10.1109/TASL.2012.2188515
-
(2012)
IEEE Transactions on Audio, Speech, and Language Processing
, vol.20
, Issue.6
, pp. 1759-1770
-
-
Salamon, J.1
Gómez, E.2
-
43
-
-
84907047334
-
Music information retrieval: Recent developments and applications
-
Schedl, M., Gomez, E., & Urbano, J., (2014). Music information retrieval: Recent developments and applications. Foundations and Trends in Information Retrieval, 8(2–3), 127–261. doi: 10.1561/1500000042
-
(2014)
Foundations and Trends in Information Retrieval
, vol.8
, Issue.2-3
, pp. 127-261
-
-
Schedl, M.1
Gomez, E.2
Urbano, J.3
-
44
-
-
84907449171
-
A simple method to determine if a music information retrieval system is a “horse”
-
Sturm, B. L., (2014). A simple method to determine if a music information retrieval system is a “horse”. IEEE Transactions on Multimedia, 16(6), 1636–1644. doi: 10.1109/TMM.2014.2330697
-
(2014)
IEEE Transactions on Multimedia
, vol.16
, Issue.6
, pp. 1636-1644
-
-
Sturm, B.L.1
-
45
-
-
85059183390
-
-
What do these 5,599,881 parameters mean? an analysis of a specific lstm music transcription model, starting with the 70,281 parameters of its softmax layer. Salamanca, Spain
-
Sturm, B. L., (2018). What do these 5,599,881 parameters mean? an analysis of a specific lstm music transcription model, starting with the 70,281 parameters of its softmax layer. In Proc. music metacreation workshop of ICCC, Salamanca, Spain
-
(2018)
Proc. music metacreation workshop of ICCC
-
-
Sturm, B.L.1
-
46
-
-
85055477089
-
Taking the models back to music practice: Evaluating generative transcription models built using deep learning
-
Sturm, B. L., & Ben-Tal, O., (2017). Taking the models back to music practice: Evaluating generative transcription models built using deep learning. Journal of Creative Music Systems, 2(1), 1–29. doi: 10.5920/JCMS.2017.09
-
(2017)
Journal of Creative Music Systems
, vol.2
, Issue.1
, pp. 1-29
-
-
Sturm, B.L.1
Ben-Tal, O.2
-
47
-
-
85059171409
-
-
Music transcription modelling and composition using deep learning. Huddersfield, UK
-
Sturm, B. L., Santos, J. F., Ben-Tal, O., & Korshunova, I., (2016). Music transcription modelling and composition using deep learning. In Proc. conf. computer simulation of musical creativity, Huddersfield, UK
-
(2016)
Proc. conf. computer simulation of musical creativity
-
-
Sturm, B.L.1
Santos, J.F.2
Ben-Tal, O.3
Korshunova, I.4
-
49
-
-
85059113274
-
-
Whinstone Music, &, (Eds
-
Vallely, F., Hamilton, C., Vallely, E., & Doherty, L., (Eds.). (1999). Crosbhealach an Cheoil: The crossroads conference 1996: Tradition and change in Irish traditional music. Whinstone Music
-
(1999)
Crosbhealach an Cheoil: The crossroads conference 1996: Tradition and change in Irish traditional music
-
-
Vallely, F.1
Hamilton, C.2
Vallely, E.3
Doherty, L.4
-
50
-
-
84867137280
-
-
Machine learning that matters. Edinburgh, Scotland (529–536
-
Wagstaff, K. L., (2012). Machine learning that matters. In Proc. int. conf. machine learning, Edinburgh, Scotland (pp. 529–536)
-
(2012)
Proc. int. conf. machine learning
-
-
Wagstaff, K.L.1
|