-
1
-
-
85060239177
-
National Bridge Inventory
-
FHWA McLean, VA
-
Federal Highway Administration, National Bridge Inventory. 2017, FHWA, McLean, VA.
-
(2017)
-
-
Federal Highway Administration1
-
2
-
-
85051383690
-
National Bridge Inspection Standards (FHWA–FAPG 23 CFR 650C)
-
FHWA McLean, VA
-
Federal Highway Administration, National Bridge Inspection Standards (FHWA–FAPG 23 CFR 650C). 2017, FHWA, McLean, VA.
-
(2017)
-
-
Federal Highway Administration1
-
3
-
-
84990830757
-
Tuwards UAV-based bridge inspection systems: a reivew and an application perspective
-
Chan, B., Guan, H., Jo, J., Blumenstein, M., Tuwards UAV-based bridge inspection systems: a reivew and an application perspective. Struct. Monit. Maint. 2:3 (2015), 283–300.
-
(2015)
Struct. Monit. Maint.
, vol.2
, Issue.3
, pp. 283-300
-
-
Chan, B.1
Guan, H.2
Jo, J.3
Blumenstein, M.4
-
4
-
-
84962860491
-
An optimized unmanned aeiral system for bridge inspection
-
Proceedings of the Insternational Symposium on Automation and Robotics in Construction, Vilnius, Lithuania.
-
C.H. Yang, M.C. Wen, Y.C. Chen, S.C. Kang, An optimized unmanned aeiral system for bridge inspection, in: Proceedings of the Insternational Symposium on Automation and Robotics in Construction, Vilnius, Lithuania, 2015.
-
(2015)
-
-
Yang, C.H.1
Wen, M.C.2
Chen, Y.C.3
Kang, S.C.4
-
5
-
-
85049963815
-
Fatigue Crack Detection Using Unmanned Aerial Systems in Under-Bridge Inspection
-
Idaho Transportation Department Boise, ID
-
Dorafshan, S., Maguire, M., Hoffer, N., Coopmans, C., Fatigue Crack Detection Using Unmanned Aerial Systems in Under-Bridge Inspection. 2017, Idaho Transportation Department, Boise, ID.
-
(2017)
-
-
Dorafshan, S.1
Maguire, M.2
Hoffer, N.3
Coopmans, C.4
-
6
-
-
85034117796
-
Challenges in bridge inspection using small unmanned aerial systems: results and lessons learned
-
Proceedings of the 2017 International Conference on Unmanned Aircraft Systems, Miami, FL.
-
S. Dorafshan, M. Maguire, N. Hoffer, C. Coopmans, Challenges in bridge inspection using small unmanned aerial systems: results and lessons learned, in: Proceedings of the 2017 International Conference on Unmanned Aircraft Systems, Miami, FL, 2017.
-
(2017)
-
-
Dorafshan, S.1
Maguire, M.2
Hoffer, N.3
Coopmans, C.4
-
7
-
-
84978679471
-
Delamination and concrete quality assessment of concrete bridge decks using a fully autonomous RABIT platform
-
Gucunski, N., Kee, S.H., La, H.M., Basily, B., Maher, A., Delamination and concrete quality assessment of concrete bridge decks using a fully autonomous RABIT platform. Int. J. Struct. Monit/. Maint. 2:1 (2015), 19–34.
-
(2015)
Int. J. Struct. Monit/. Maint.
, vol.2
, Issue.1
, pp. 19-34
-
-
Gucunski, N.1
Kee, S.H.2
La, H.M.3
Basily, B.4
Maher, A.5
-
8
-
-
84911482396
-
A robotic crack inspectionand mapping system for bridge deck maintenance
-
Lim, R.S., Lag, H.M., Sheng, W., A robotic crack inspectionand mapping system for bridge deck maintenance. ICCC Trans. Autom. Sci. Eng. 11:2 (2014), 367–378.
-
(2014)
ICCC Trans. Autom. Sci. Eng.
, vol.11
, Issue.2
, pp. 367-378
-
-
Lim, R.S.1
Lag, H.M.2
Sheng, W.3
-
9
-
-
84929240512
-
Implementation of a fully autonomous platform for assessment of concrete bridge decks RABIT
-
Structures Congress 2015, Portland, OR.
-
N. Gucunski, S.H. Kee, H. La, B. Basily, A. Maher, H. Bhasemi, Implementation of a fully autonomous platform for assessment of concrete bridge decks RABIT, in: Structures Congress 2015, Portland, OR, 2015.
-
(2015)
-
-
Gucunski, N.1
Kee, S.H.2
La, H.3
Basily, B.4
Maher, A.5
Bhasemi, H.6
-
10
-
-
85049982611
-
Bridge inspection: human performance, unmanned aerial vehicles and automation
-
Dorafshan, S., Maguire, M., Bridge inspection: human performance, unmanned aerial vehicles and automation. J. Civil Struct. Health Monit. 8:3 (2018), 443–476.
-
(2018)
J. Civil Struct. Health Monit.
, vol.8
, Issue.3
, pp. 443-476
-
-
Dorafshan, S.1
Maguire, M.2
-
11
-
-
34547699060
-
A UAV for bridge inspection: visual servoing control law with orientation limits
-
Metni, N., Hamel, T., A UAV for bridge inspection: visual servoing control law with orientation limits. Autom. Constr. 17:1 (2007), 3–10.
-
(2007)
Autom. Constr.
, vol.17
, Issue.1
, pp. 3-10
-
-
Metni, N.1
Hamel, T.2
-
12
-
-
85042640635
-
Automatic Surface Crack Detection in Concrete Structures using OTSU Thresholding and Morphological Operations (UTC 01-2016)
-
Utah Transportation Center Logan, UT
-
Dorafshan, S., Maguire, M., Qi, X., Automatic Surface Crack Detection in Concrete Structures using OTSU Thresholding and Morphological Operations (UTC 01-2016). 2016, Utah Transportation Center, Logan, UT.
-
(2016)
-
-
Dorafshan, S.1
Maguire, M.2
Qi, X.3
-
13
-
-
84867902051
-
Rapid entropy-based detection and properties measurement of concrete spalling with machine vision for post-earthquake safety assessments
-
German, S., Brilakis, I., DesRoches, R., Rapid entropy-based detection and properties measurement of concrete spalling with machine vision for post-earthquake safety assessments. Adv. Eng. Inf. 26:4 (2012), 846–858.
-
(2012)
Adv. Eng. Inf.
, vol.26
, Issue.4
, pp. 846-858
-
-
German, S.1
Brilakis, I.2
DesRoches, R.3
-
14
-
-
84928645758
-
Combined imaging technologies for concrete bridge deck condition assessment
-
Vaghefi, K., Ahlborn, T.T.M., Harris, D.K., Brooks, C.N., Combined imaging technologies for concrete bridge deck condition assessment. J. Perform. Constr. Facil., 29(4), 2013.
-
(2013)
J. Perform. Constr. Facil.
, vol.29
, Issue.4
-
-
Vaghefi, K.1
Ahlborn, T.T.M.2
Harris, D.K.3
Brooks, C.N.4
-
15
-
-
79953246980
-
Automated detection of delamination and disbond from wavefield images obtained using a scanning laser vibrometer
-
Sohn, H., Dutta, D., Yang, J.Y., DeSimio, M., Olson, S., Swenson, E., Automated detection of delamination and disbond from wavefield images obtained using a scanning laser vibrometer. Smart Mater. Struct., 20, 2011, 4.
-
(2011)
Smart Mater. Struct.
, vol.20
, pp. 4
-
-
Sohn, H.1
Dutta, D.2
Yang, J.Y.3
DeSimio, M.4
Olson, S.5
Swenson, E.6
-
16
-
-
85025826007
-
Remote sensing of concrete bridge decks using unmanned aerial vehicle infrared thermography
-
Omar, T., Nehdi, M.L., Remote sensing of concrete bridge decks using unmanned aerial vehicle infrared thermography. Autom. Constr. 83 (2017), 360–371.
-
(2017)
Autom. Constr.
, vol.83
, pp. 360-371
-
-
Omar, T.1
Nehdi, M.L.2
-
17
-
-
84978722789
-
Bridge related damage quantification using unmanned aerial vehicle imagery
-
Ellenberg, A., Kontsos, A., Moon, F., Bartoli, I., Bridge related damage quantification using unmanned aerial vehicle imagery. Struct. Control Health Monit. 23:9 (2016), 1168–1179.
-
(2016)
Struct. Control Health Monit.
, vol.23
, Issue.9
, pp. 1168-1179
-
-
Ellenberg, A.1
Kontsos, A.2
Moon, F.3
Bartoli, I.4
-
18
-
-
85049935316
-
Fatigue crack detection using unmanned aerial systems in fracture critical
-
Dorafshan, S., Thomas, R., Maguire, M., Fatigue crack detection using unmanned aerial systems in fracture critical. J. Bridge Eng., 23(10), 2018.
-
(2018)
J. Bridge Eng.
, vol.23
, Issue.10
-
-
Dorafshan, S.1
Thomas, R.2
Maguire, M.3
-
19
-
-
84857356877
-
Adaptive vision-based crack detection using 3D scene reconstruction for condition assessment of structures
-
Jahanshahi, M.R., Masri, S.F., Adaptive vision-based crack detection using 3D scene reconstruction for condition assessment of structures. Autom. Constr. 22 (2012), 567–576.
-
(2012)
Autom. Constr.
, vol.22
, pp. 567-576
-
-
Jahanshahi, M.R.1
Masri, S.F.2
-
20
-
-
84952838085
-
Flexural cracking behavior of normal strength, high strength and high strength fiber concrete beams, using digital image correlation technique
-
Hamrat, M., Boulekbache, B., Chemrouk, M., Amziane, S., Flexural cracking behavior of normal strength, high strength and high strength fiber concrete beams, using digital image correlation technique. Constr. Build. Mater. 106 (2016), 678–692.
-
(2016)
Constr. Build. Mater.
, vol.106
, pp. 678-692
-
-
Hamrat, M.1
Boulekbache, B.2
Chemrouk, M.3
Amziane, S.4
-
21
-
-
84962829148
-
Processing digital images for crack localization in reinforced concrete members
-
Rimkus, A., Podviezko, A., Gribniak, V., Processing digital images for crack localization in reinforced concrete members. Procedia Eng. 122 (2015), 239–243.
-
(2015)
Procedia Eng.
, vol.122
, pp. 239-243
-
-
Rimkus, A.1
Podviezko, A.2
Gribniak, V.3
-
22
-
-
85042285346
-
A method of detecting the cracks of concrete undergo high-temperature
-
Li, L., Wang, Q., Zhang, G., Shi, L., Dong, J., Jia, P., A method of detecting the cracks of concrete undergo high-temperature. Constr. Build. Mater. 162 (2018), 345–358.
-
(2018)
Constr. Build. Mater.
, vol.162
, pp. 345-358
-
-
Li, L.1
Wang, Q.2
Zhang, G.3
Shi, L.4
Dong, J.5
Jia, P.6
-
23
-
-
85019093429
-
Comparative analysis of image binarization methods for crack identification in concrete structures
-
Kim, H., Ahn, E., Cho, S., Shin, M., Sim, S.H., Comparative analysis of image binarization methods for crack identification in concrete structures. Cem. Concr. Res. 99 (2017), 53–61.
-
(2017)
Cem. Concr. Res.
, vol.99
, pp. 53-61
-
-
Kim, H.1
Ahn, E.2
Cho, S.3
Shin, M.4
Sim, S.H.5
-
24
-
-
38049173628
-
Image-based crack detection for real concrete surfaces
-
Yamaguchi, T., Nakamuran, S., Saegusa, R., Hashimoto, S., Image-based crack detection for real concrete surfaces. IEEJ Trans. Electr. Electr. Eng. 3:1 (2008), 128–135.
-
(2008)
IEEJ Trans. Electr. Electr. Eng.
, vol.3
, Issue.1
, pp. 128-135
-
-
Yamaguchi, T.1
Nakamuran, S.2
Saegusa, R.3
Hashimoto, S.4
-
25
-
-
33747175931
-
Wavelet transform for structural health monitoring: a compendium of uses and features
-
Taha, M.R., Noureldin, A., Lucero, J.L., Baca, T.J., Wavelet transform for structural health monitoring: a compendium of uses and features. Struct. Health Monit. 5:3 (2006), 267–295.
-
(2006)
Struct. Health Monit.
, vol.5
, Issue.3
, pp. 267-295
-
-
Taha, M.R.1
Noureldin, A.2
Lucero, J.L.3
Baca, T.J.4
-
26
-
-
85051399784
-
Detection of defects in colour texture surfaces
-
IAPR Workshop on Machine Vision Applications, Kawasaki.
-
J. Kittler, R. Marik, M. Mirmehdi, M. Petrou, J. Song, Detection of defects in colour texture surfaces, in: IAPR Workshop on Machine Vision Applications, Kawasaki, 1994.
-
(1994)
-
-
Kittler, J.1
Marik, R.2
Mirmehdi, M.3
Petrou, M.4
Song, J.5
-
27
-
-
4043147528
-
Analysis of edge-detection techniques for crack identification in bridges
-
Abdel-Qader, I., Abudayyeh, P., Kelly, M.E., Analysis of edge-detection techniques for crack identification in bridges. J. Comput. Civil Eng. 17:4 (2003), 255–263.
-
(2003)
J. Comput. Civil Eng.
, vol.17
, Issue.4
, pp. 255-263
-
-
Abdel-Qader, I.1
Abudayyeh, P.2
Kelly, M.E.3
-
28
-
-
84957818848
-
Multifractal analysis of crack patterns in reinforced concrete shear walls
-
Ebrahimkhanlou, A., Farhidzadeh, A., Salamone, S., Multifractal analysis of crack patterns in reinforced concrete shear walls. Struct. Health Monit. 15:1 (2016), 81–92.
-
(2016)
Struct. Health Monit.
, vol.15
, Issue.1
, pp. 81-92
-
-
Ebrahimkhanlou, A.1
Farhidzadeh, A.2
Salamone, S.3
-
29
-
-
67949104954
-
Bridge inspection robot system with machine vision
-
Oh, J.K., Jang, G., Oh, S., Lee, J.H., Yi, B.J., Moon, Y.S., Lee, J.S., Choi, Y., Bridge inspection robot system with machine vision. Autom. Constr. 18:7 (2009), 929–941.
-
(2009)
Autom. Constr.
, vol.18
, Issue.7
, pp. 929-941
-
-
Oh, J.K.1
Jang, G.2
Oh, S.3
Lee, J.H.4
Yi, B.J.5
Moon, Y.S.6
Lee, J.S.7
Choi, Y.8
-
30
-
-
84863754596
-
Intelligent crack detecting algorithm on the concrete crack image using neural network
-
Proceedings of the 28th International Symposium on Automation and Robotics in Construction, Seoul.
-
H. Moon, J. Kim, Intelligent crack detecting algorithm on the concrete crack image using neural network, in: Proceedings of the 28th International Symposium on Automation and Robotics in Construction, Seoul, 2011.
-
(2011)
-
-
Moon, H.1
Kim, J.2
-
31
-
-
84911482396
-
A robotic crack inspection and mapping system for bridge deck maintenance
-
Lim, R.S., La, H.M., Sheng, W., A robotic crack inspection and mapping system for bridge deck maintenance. IEEE Trans. Autom. Sci. Eng. 11:2 (2014), 367–378.
-
(2014)
IEEE Trans. Autom. Sci. Eng.
, vol.11
, Issue.2
, pp. 367-378
-
-
Lim, R.S.1
La, H.M.2
Sheng, W.3
-
32
-
-
85045295116
-
Development of crack detection system with unmanned aerial vehicles and digital image processing
-
Advances in Structural Engineering and Mechanics (ASEM15), Incheon.
-
J.W. Kim, S.B. Kim, J.C. Park, J.W. Nam, Development of crack detection system with unmanned aerial vehicles and digital image processing, in: Advances in Structural Engineering and Mechanics (ASEM15), Incheon, 2015.
-
(2015)
-
-
Kim, J.W.1
Kim, S.B.2
Park, J.C.3
Nam, J.W.4
-
33
-
-
84959450438
-
Detection crack in image using Otsu method and multiple filtering in image processing techniques
-
Talab, A.M.A., Huang, Z., Xi, F., HaiMing, L., Detection crack in image using Otsu method and multiple filtering in image processing techniques. Optik-Int. J. Light Electron Opt. 127:3 (2016), 1030–1033.
-
(2016)
Optik-Int. J. Light Electron Opt.
, vol.127
, Issue.3
, pp. 1030-1033
-
-
Talab, A.M.A.1
Huang, Z.2
Xi, F.3
HaiMing, L.4
-
34
-
-
85034055297
-
Comparing automated image-based crack detection techniques in spatial and frequency domains
-
Proceedings of the 26th American Society of Nondestructive Testing Reseach Symposium, Jacksonville, FL.
-
S. Dorafshan, M. Maguire, M. Chang, Comparing automated image-based crack detection techniques in spatial and frequency domains, in: Proceedings of the 26th American Society of Nondestructive Testing Reseach Symposium, Jacksonville, FL, 2017.
-
(2017)
-
-
Dorafshan, S.1
Maguire, M.2
Chang, M.3
-
35
-
-
85051390617
-
Autonomous detection of concrete cracks on bridge decks and fatigue cracks on steel members
-
Digital Imaging 2017, Mashantucket, CT.
-
S. Dorafshan, M. Maguire, Autonomous detection of concrete cracks on bridge decks and fatigue cracks on steel members, in: Digital Imaging 2017, Mashantucket, CT, 2017.
-
(2017)
-
-
Dorafshan, S.1
Maguire, M.2
-
36
-
-
85028546617
-
Automatic crack detection on concrete images using segmentation via fuzy C-means clustering
-
Proceedings of the 2017 International Conference on Applied System Innovation, Sapporo.
-
Y. Noh, D. Koo, Y. M. Kang, D. Park, D. Lee, Automatic crack detection on concrete images using segmentation via fuzy C-means clustering, in: Proceedings of the 2017 International Conference on Applied System Innovation, Sapporo, 2017.
-
(2017)
-
-
Noh, Y.1
Koo, D.2
Kang, Y.M.3
Park, D.4
Lee, D.5
-
37
-
-
84874583652
-
Crack detection in concrete surfaces using image processing, fuzzy logic, and neural networks
-
In 2012 IEEE Fifth International Conference on Advanced Computational Intelligence (ICACI), Nanjing, China.
-
G.K. Choudhary, S. Dey, Crack detection in concrete surfaces using image processing, fuzzy logic, and neural networks, in: In 2012 IEEE Fifth International Conference on Advanced Computational Intelligence (ICACI), Nanjing, China, 2012.
-
(2012)
-
-
Choudhary, G.K.1
Dey, S.2
-
38
-
-
85051210801
-
Autonomous structural visual inspection using region-based deep learning for detecting multiple damage types
-
Cha, Y.J., Choi, W., Suh, G., Mahmoudkhani, S., Büyüköztürk, O., Autonomous structural visual inspection using region-based deep learning for detecting multiple damage types. Comp. Aided Civil Infrastruct. Eng., 2017.
-
(2017)
Comp. Aided Civil Infrastruct. Eng.
-
-
Cha, Y.J.1
Choi, W.2
Suh, G.3
Mahmoudkhani, S.4
Büyüköztürk, O.5
-
39
-
-
85017098035
-
Deep learning-based crack damage detection using convolutional neural networks
-
Cha, Y.J., Choi, W., Büyüköztürk, O., Deep learning-based crack damage detection using convolutional neural networks. Comput.-Aided Civil Infrastruct. Eng. 32:5 (2017), 361–378.
-
(2017)
Comput.-Aided Civil Infrastruct. Eng.
, vol.32
, Issue.5
, pp. 361-378
-
-
Cha, Y.J.1
Choi, W.2
Büyüköztürk, O.3
-
40
-
-
85053861869
-
Deep learning neural networks for suas-assisted structural inspections: feasibility and application
-
ICUAS 2018, Dallas, TX.
-
S. Dorafshan, C. Coopmans, R.J. Thomas, M. Maguire, Deep learning neural networks for suas-assisted structural inspections: feasibility and application, in: ICUAS 2018, Dallas, TX, 2018.
-
(2018)
-
-
Dorafshan, S.1
Coopmans, C.2
Thomas, R.J.3
Maguire, M.4
-
41
-
-
85039860864
-
Crack detection using image processing: a critical review and analysis
-
(in press)
-
Mohan, A., Poobal, S., Crack detection using image processing: a critical review and analysis. (Alexandria Eng. J., 2017 in press).
-
(2017)
Alexandria Eng. J.
-
-
Mohan, A.1
Poobal, S.2
-
42
-
-
85051381714
-
SDNET2018: A Concrete Crack Image Dataset for Machine Learning Applications
-
Utah State Universiy Logan
-
Maguire, M., Dorafshan, S., Thomas, R., SDNET2018: A Concrete Crack Image Dataset for Machine Learning Applications. 2018, Utah State Universiy, Logan.
-
(2018)
-
-
Maguire, M.1
Dorafshan, S.2
Thomas, R.3
-
43
-
-
84873301045
-
Texture analysis based damage detection of ageing infrastructural elements
-
O'Byrne, M., Schoefs, F., Ghosh, B., Pakrashi, V., Texture analysis based damage detection of ageing infrastructural elements. Comput.-Aided Civil Infrastruct. Eng. 28:3 (2013), 162–177.
-
(2013)
Comput.-Aided Civil Infrastruct. Eng.
, vol.28
, Issue.3
, pp. 162-177
-
-
O'Byrne, M.1
Schoefs, F.2
Ghosh, B.3
Pakrashi, V.4
-
44
-
-
84952360878
-
Improvement of crack-detection accuracy using a novel crack defragmentation technique in image-based road assessment
-
Wu, L., Mokhtari, S., Nazef, A., Nam, B., Yun, H.B., Improvement of crack-detection accuracy using a novel crack defragmentation technique in image-based road assessment. J. Comput. Civil Eng., 30(1), 2014, pp.
-
(2014)
J. Comput. Civil Eng.
, vol.30
, Issue.1
-
-
Wu, L.1
Mokhtari, S.2
Nazef, A.3
Nam, B.4
Yun, H.B.5
-
45
-
-
84910651844
-
Deep learning in neural networks: an overview
-
Schmidhuber, J., Deep learning in neural networks: an overview. Neural Networks 61 (2015), 85–117.
-
(2015)
Neural Networks
, vol.61
, pp. 85-117
-
-
Schmidhuber, J.1
-
46
-
-
84876231242
-
Imagenet classification with deep convolutional neural networks
-
Advances in Neural Information Processing Systems
-
A. Krizhevsky, I. Sutskever, G.E. Hinton, Imagenet classification with deep convolutional neural networks, in: Advances in Neural Information Processing Systems, 2012, pp. 1097–1105.
-
(2012)
, pp. 1097-1105
-
-
Krizhevsky, A.1
Sutskever, I.2
Hinton, G.E.3
-
47
-
-
84937522268
-
-
Going deeper with convolutions, CVPR.
-
C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, V. Vanhoucke, A. Rabinovich, Going deeper with convolutions, CVPR, 2015.
-
(2015)
-
-
Szegedy, C.1
Liu, W.2
Jia, Y.3
Sermanet, P.4
Reed, S.5
Anguelov, D.6
Vanhoucke, V.7
Rabinovich, A.8
-
48
-
-
84986274465
-
Deep residual learning for image recognition
-
Proceedings of the IEEE conference on computer vision and pattern recognition
-
K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recognition, in: Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 770–778.
-
-
-
He, K.1
Zhang, X.2
Ren, S.3
Sun, J.4
-
49
-
-
72249100259
-
Imagenet: A large-scale hierarchical image database
-
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Miami, FL.
-
J. Deng, W. Dong, R. Socher, L. J. Li, K. Li, L. Fei-Fei, Imagenet: A large-scale hierarchical image database, in: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Miami, FL, 2009.
-
(2009)
-
-
Deng, J.1
Dong, W.2
Socher, R.3
Li, L.J.4
Li, K.5
Fei-Fei, L.6
-
50
-
-
84986274465
-
Deep residual learning for image recognition
-
IEEE Conference on Computer Vision and Pattern Recognition, Seattle. WA.
-
K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recognition, in: IEEE Conference on Computer Vision and Pattern Recognition, Seattle. WA, 2016.
-
(2016)
-
-
He, K.1
Zhang, X.2
Ren, S.3
Sun, J.4
-
51
-
-
84937522268
-
-
Going Deeper with Convolutions, in CVPR.
-
C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, A. Rabinovich, Going Deeper with Convolutions, in CVPR, 2015.
-
(2015)
-
-
Szegedy, C.1
Liu, W.2
Jia, Y.3
Sermanet, P.4
Reed, S.5
Anguelov, D.6
Rabinovich, A.7
-
52
-
-
85006722293
-
Road crack detection using deep convolutional neural network
-
Image Processing (ICIP) IEEE International Conference on.
-
L. Zhang, F. Yang, Y.D. Zhang, Y.J. Zhu, Road crack detection using deep convolutional neural network, in: Image Processing (ICIP), 2016 IEEE International Conference on, 2016.
-
(2016)
-
-
Zhang, L.1
Yang, F.2
Zhang, Y.D.3
Zhu, Y.J.4
-
53
-
-
85029008687
-
Automated pixel-level pavement crack detection on 3D asphalt surfaces using a deep-learning network
-
Zhang, A., Wang, K.C., Li, B., Yang, E., Dai, X., Peng, Y., Fei, Y., Liu, Y., Li, J.Q., Chen, C., Automated pixel-level pavement crack detection on 3D asphalt surfaces using a deep-learning network. Comp.-Aided Civil Infrastruct. Eng. 32:10 (2017), 805–819.
-
(2017)
Comp.-Aided Civil Infrastruct. Eng.
, vol.32
, Issue.10
, pp. 805-819
-
-
Zhang, A.1
Wang, K.C.2
Li, B.3
Yang, E.4
Dai, X.5
Peng, Y.6
Fei, Y.7
Liu, Y.8
Li, J.Q.9
Chen, C.10
-
54
-
-
85021994241
-
NB-CNN: deep learning-based crack detection using convolutional neural network and Naïve bayes data fusion
-
Chen, F.C., Jahanshahi, M.R., NB-CNN: deep learning-based crack detection using convolutional neural network and Naïve bayes data fusion. IEEE Trans. Indus. Electron., 2017.
-
(2017)
IEEE Trans. Indus. Electron.
-
-
Chen, F.C.1
Jahanshahi, M.R.2
-
55
-
-
85053644257
-
Evaluation of deep learning approaches based on convolutional neural networks for corrosion detection
-
p. 1475921717737051
-
Atha, D.J., Jahanshahi, M.R., Evaluation of deep learning approaches based on convolutional neural networks for corrosion detection. Struct. Health Monit., 2017 p. 1475921717737051.
-
(2017)
Struct. Health Monit.
-
-
Atha, D.J.1
Jahanshahi, M.R.2
-
56
-
-
85044736143
-
Automated defect classification in sewer closed circuit television inspections using deep convolutional neural networks
-
Kumar, S.S., Abraham, D.M., Jahanshahi, M.R., Iseley, T., Starr, J., Automated defect classification in sewer closed circuit television inspections using deep convolutional neural networks. Autom. Constr. 91 (2018), 273–283.
-
(2018)
Autom. Constr.
, vol.91
, pp. 273-283
-
-
Kumar, S.S.1
Abraham, D.M.2
Jahanshahi, M.R.3
Iseley, T.4
Starr, J.5
-
57
-
-
85077149682
-
Single-sensor acoustic emission source localization in plate-like structures using deep learning
-
Ebrahimkhanlou, A., Salamone, S., Single-sensor acoustic emission source localization in plate-like structures using deep learning. Aerospace, 5(2), 2018, 50.
-
(2018)
Aerospace
, vol.5
, Issue.2
, pp. 50
-
-
Ebrahimkhanlou, A.1
Salamone, S.2
-
58
-
-
85061020372
-
Computer vision and deep learning–based data anomaly detection method for structural health monitoring
-
p. 1475921718757405
-
Bao, Y., Tang, Z., Li, H., Zhang, Y., Computer vision and deep learning–based data anomaly detection method for structural health monitoring. Struct. Health Monit., 2018 p. 1475921718757405.
-
(2018)
Struct. Health Monit.
-
-
Bao, Y.1
Tang, Z.2
Li, H.3
Zhang, Y.4
-
59
-
-
85047630642
-
Autonomous UAVs for structural health monitoring using deep learning and an ultrasonic beacon system with geo-tagging
-
Kang, D., Cha, Y.J., Autonomous UAVs for structural health monitoring using deep learning and an ultrasonic beacon system with geo-tagging. Comp.-Aided Civil Infrastruct. Eng., 2018.
-
(2018)
Comp.-Aided Civil Infrastruct. Eng.
-
-
Kang, D.1
Cha, Y.J.2
-
60
-
-
85049569551
-
Damage detection with an autonomous UAV using deep learning
-
International Society for Optics and Photonics Denver, CO (Vol. 10598, p. 1059804)
-
Kang, D., Cha, Y.J., Damage detection with an autonomous UAV using deep learning. Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems 2018, 2018, International Society for Optics and Photonics, Denver, CO (Vol. 10598, p. 1059804).
-
(2018)
Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems 2018
-
-
Kang, D.1
Cha, Y.J.2
-
61
-
-
85051380535
-
-
A guide to convolution arithmetic for deep learning, arXiv preprint arXiv:1603.07285.
-
V. Dumoulin, F. Visin, A guide to convolution arithmetic for deep learning, arXiv preprint arXiv:1603.07285.
-
-
-
Dumoulin, V.1
Visin, F.2
-
62
-
-
85051392473
-
-
J. J. and Y. S., Stanford University, [Online]. Available: [Accessed 21 03 2018].
-
Fei-Fei L., J. J and Y. S., Stanford University, 2017. [Online]. Available: http://cs231n.stanford.edu/. [Accessed 21 03 2018].
-
(2017)
-
-
Fei-Fei, L.1
-
63
-
-
84969962996
-
Deep convolutional neural networks for computer-aided detection: CNN architectures, dataset characteristics and transfer learning
-
Shin, H.C., Roth, H.R., Gao, M., Lu, L., Xu, Z., Nogues, I., Summers, R.M., Deep convolutional neural networks for computer-aided detection: CNN architectures, dataset characteristics and transfer learning. IEEE Trans. Med. Imag. 35:5 (2016), 1285–1298.
-
(2016)
IEEE Trans. Med. Imag.
, vol.35
, Issue.5
, pp. 1285-1298
-
-
Shin, H.C.1
Roth, H.R.2
Gao, M.3
Lu, L.4
Xu, Z.5
Nogues, I.6
Summers, R.M.7
|