메뉴 건너뛰기




Volumn 186, Issue , 2018, Pages 1031-1045

Comparison of deep convolutional neural networks and edge detectors for image-based crack detection in concrete

Author keywords

Concrete; Crack detection; Deep learning; Edge detection; Image processing; Neural network; Structural health monitoring; Vision based

Indexed keywords

BINARY IMAGES; CLASSIFICATION (OF INFORMATION); COMPUTATIONAL EFFICIENCY; CONCRETES; CONVOLUTION; DAMAGE DETECTION; DEEP LEARNING; DEEP NEURAL NETWORKS; EDGE DETECTION; IMAGE PROCESSING; NEURAL NETWORKS; STRUCTURAL HEALTH MONITORING;

EID: 85051379739     PISSN: 09500618     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.conbuildmat.2018.08.011     Document Type: Article
Times cited : (562)

References (64)
  • 1
    • 85060239177 scopus 로고    scopus 로고
    • National Bridge Inventory
    • FHWA McLean, VA
    • Federal Highway Administration, National Bridge Inventory. 2017, FHWA, McLean, VA.
    • (2017)
    • Federal Highway Administration1
  • 2
    • 85051383690 scopus 로고    scopus 로고
    • National Bridge Inspection Standards (FHWA–FAPG 23 CFR 650C)
    • FHWA McLean, VA
    • Federal Highway Administration, National Bridge Inspection Standards (FHWA–FAPG 23 CFR 650C). 2017, FHWA, McLean, VA.
    • (2017)
    • Federal Highway Administration1
  • 3
    • 84990830757 scopus 로고    scopus 로고
    • Tuwards UAV-based bridge inspection systems: a reivew and an application perspective
    • Chan, B., Guan, H., Jo, J., Blumenstein, M., Tuwards UAV-based bridge inspection systems: a reivew and an application perspective. Struct. Monit. Maint. 2:3 (2015), 283–300.
    • (2015) Struct. Monit. Maint. , vol.2 , Issue.3 , pp. 283-300
    • Chan, B.1    Guan, H.2    Jo, J.3    Blumenstein, M.4
  • 4
    • 84962860491 scopus 로고    scopus 로고
    • An optimized unmanned aeiral system for bridge inspection
    • Proceedings of the Insternational Symposium on Automation and Robotics in Construction, Vilnius, Lithuania.
    • C.H. Yang, M.C. Wen, Y.C. Chen, S.C. Kang, An optimized unmanned aeiral system for bridge inspection, in: Proceedings of the Insternational Symposium on Automation and Robotics in Construction, Vilnius, Lithuania, 2015.
    • (2015)
    • Yang, C.H.1    Wen, M.C.2    Chen, Y.C.3    Kang, S.C.4
  • 5
    • 85049963815 scopus 로고    scopus 로고
    • Fatigue Crack Detection Using Unmanned Aerial Systems in Under-Bridge Inspection
    • Idaho Transportation Department Boise, ID
    • Dorafshan, S., Maguire, M., Hoffer, N., Coopmans, C., Fatigue Crack Detection Using Unmanned Aerial Systems in Under-Bridge Inspection. 2017, Idaho Transportation Department, Boise, ID.
    • (2017)
    • Dorafshan, S.1    Maguire, M.2    Hoffer, N.3    Coopmans, C.4
  • 6
    • 85034117796 scopus 로고    scopus 로고
    • Challenges in bridge inspection using small unmanned aerial systems: results and lessons learned
    • Proceedings of the 2017 International Conference on Unmanned Aircraft Systems, Miami, FL.
    • S. Dorafshan, M. Maguire, N. Hoffer, C. Coopmans, Challenges in bridge inspection using small unmanned aerial systems: results and lessons learned, in: Proceedings of the 2017 International Conference on Unmanned Aircraft Systems, Miami, FL, 2017.
    • (2017)
    • Dorafshan, S.1    Maguire, M.2    Hoffer, N.3    Coopmans, C.4
  • 7
    • 84978679471 scopus 로고    scopus 로고
    • Delamination and concrete quality assessment of concrete bridge decks using a fully autonomous RABIT platform
    • Gucunski, N., Kee, S.H., La, H.M., Basily, B., Maher, A., Delamination and concrete quality assessment of concrete bridge decks using a fully autonomous RABIT platform. Int. J. Struct. Monit/. Maint. 2:1 (2015), 19–34.
    • (2015) Int. J. Struct. Monit/. Maint. , vol.2 , Issue.1 , pp. 19-34
    • Gucunski, N.1    Kee, S.H.2    La, H.M.3    Basily, B.4    Maher, A.5
  • 8
    • 84911482396 scopus 로고    scopus 로고
    • A robotic crack inspectionand mapping system for bridge deck maintenance
    • Lim, R.S., Lag, H.M., Sheng, W., A robotic crack inspectionand mapping system for bridge deck maintenance. ICCC Trans. Autom. Sci. Eng. 11:2 (2014), 367–378.
    • (2014) ICCC Trans. Autom. Sci. Eng. , vol.11 , Issue.2 , pp. 367-378
    • Lim, R.S.1    Lag, H.M.2    Sheng, W.3
  • 9
    • 84929240512 scopus 로고    scopus 로고
    • Implementation of a fully autonomous platform for assessment of concrete bridge decks RABIT
    • Structures Congress 2015, Portland, OR.
    • N. Gucunski, S.H. Kee, H. La, B. Basily, A. Maher, H. Bhasemi, Implementation of a fully autonomous platform for assessment of concrete bridge decks RABIT, in: Structures Congress 2015, Portland, OR, 2015.
    • (2015)
    • Gucunski, N.1    Kee, S.H.2    La, H.3    Basily, B.4    Maher, A.5    Bhasemi, H.6
  • 10
    • 85049982611 scopus 로고    scopus 로고
    • Bridge inspection: human performance, unmanned aerial vehicles and automation
    • Dorafshan, S., Maguire, M., Bridge inspection: human performance, unmanned aerial vehicles and automation. J. Civil Struct. Health Monit. 8:3 (2018), 443–476.
    • (2018) J. Civil Struct. Health Monit. , vol.8 , Issue.3 , pp. 443-476
    • Dorafshan, S.1    Maguire, M.2
  • 11
    • 34547699060 scopus 로고    scopus 로고
    • A UAV for bridge inspection: visual servoing control law with orientation limits
    • Metni, N., Hamel, T., A UAV for bridge inspection: visual servoing control law with orientation limits. Autom. Constr. 17:1 (2007), 3–10.
    • (2007) Autom. Constr. , vol.17 , Issue.1 , pp. 3-10
    • Metni, N.1    Hamel, T.2
  • 12
    • 85042640635 scopus 로고    scopus 로고
    • Automatic Surface Crack Detection in Concrete Structures using OTSU Thresholding and Morphological Operations (UTC 01-2016)
    • Utah Transportation Center Logan, UT
    • Dorafshan, S., Maguire, M., Qi, X., Automatic Surface Crack Detection in Concrete Structures using OTSU Thresholding and Morphological Operations (UTC 01-2016). 2016, Utah Transportation Center, Logan, UT.
    • (2016)
    • Dorafshan, S.1    Maguire, M.2    Qi, X.3
  • 13
    • 84867902051 scopus 로고    scopus 로고
    • Rapid entropy-based detection and properties measurement of concrete spalling with machine vision for post-earthquake safety assessments
    • German, S., Brilakis, I., DesRoches, R., Rapid entropy-based detection and properties measurement of concrete spalling with machine vision for post-earthquake safety assessments. Adv. Eng. Inf. 26:4 (2012), 846–858.
    • (2012) Adv. Eng. Inf. , vol.26 , Issue.4 , pp. 846-858
    • German, S.1    Brilakis, I.2    DesRoches, R.3
  • 15
    • 79953246980 scopus 로고    scopus 로고
    • Automated detection of delamination and disbond from wavefield images obtained using a scanning laser vibrometer
    • Sohn, H., Dutta, D., Yang, J.Y., DeSimio, M., Olson, S., Swenson, E., Automated detection of delamination and disbond from wavefield images obtained using a scanning laser vibrometer. Smart Mater. Struct., 20, 2011, 4.
    • (2011) Smart Mater. Struct. , vol.20 , pp. 4
    • Sohn, H.1    Dutta, D.2    Yang, J.Y.3    DeSimio, M.4    Olson, S.5    Swenson, E.6
  • 16
    • 85025826007 scopus 로고    scopus 로고
    • Remote sensing of concrete bridge decks using unmanned aerial vehicle infrared thermography
    • Omar, T., Nehdi, M.L., Remote sensing of concrete bridge decks using unmanned aerial vehicle infrared thermography. Autom. Constr. 83 (2017), 360–371.
    • (2017) Autom. Constr. , vol.83 , pp. 360-371
    • Omar, T.1    Nehdi, M.L.2
  • 17
    • 84978722789 scopus 로고    scopus 로고
    • Bridge related damage quantification using unmanned aerial vehicle imagery
    • Ellenberg, A., Kontsos, A., Moon, F., Bartoli, I., Bridge related damage quantification using unmanned aerial vehicle imagery. Struct. Control Health Monit. 23:9 (2016), 1168–1179.
    • (2016) Struct. Control Health Monit. , vol.23 , Issue.9 , pp. 1168-1179
    • Ellenberg, A.1    Kontsos, A.2    Moon, F.3    Bartoli, I.4
  • 18
    • 85049935316 scopus 로고    scopus 로고
    • Fatigue crack detection using unmanned aerial systems in fracture critical
    • Dorafshan, S., Thomas, R., Maguire, M., Fatigue crack detection using unmanned aerial systems in fracture critical. J. Bridge Eng., 23(10), 2018.
    • (2018) J. Bridge Eng. , vol.23 , Issue.10
    • Dorafshan, S.1    Thomas, R.2    Maguire, M.3
  • 19
    • 84857356877 scopus 로고    scopus 로고
    • Adaptive vision-based crack detection using 3D scene reconstruction for condition assessment of structures
    • Jahanshahi, M.R., Masri, S.F., Adaptive vision-based crack detection using 3D scene reconstruction for condition assessment of structures. Autom. Constr. 22 (2012), 567–576.
    • (2012) Autom. Constr. , vol.22 , pp. 567-576
    • Jahanshahi, M.R.1    Masri, S.F.2
  • 20
    • 84952838085 scopus 로고    scopus 로고
    • Flexural cracking behavior of normal strength, high strength and high strength fiber concrete beams, using digital image correlation technique
    • Hamrat, M., Boulekbache, B., Chemrouk, M., Amziane, S., Flexural cracking behavior of normal strength, high strength and high strength fiber concrete beams, using digital image correlation technique. Constr. Build. Mater. 106 (2016), 678–692.
    • (2016) Constr. Build. Mater. , vol.106 , pp. 678-692
    • Hamrat, M.1    Boulekbache, B.2    Chemrouk, M.3    Amziane, S.4
  • 21
    • 84962829148 scopus 로고    scopus 로고
    • Processing digital images for crack localization in reinforced concrete members
    • Rimkus, A., Podviezko, A., Gribniak, V., Processing digital images for crack localization in reinforced concrete members. Procedia Eng. 122 (2015), 239–243.
    • (2015) Procedia Eng. , vol.122 , pp. 239-243
    • Rimkus, A.1    Podviezko, A.2    Gribniak, V.3
  • 22
    • 85042285346 scopus 로고    scopus 로고
    • A method of detecting the cracks of concrete undergo high-temperature
    • Li, L., Wang, Q., Zhang, G., Shi, L., Dong, J., Jia, P., A method of detecting the cracks of concrete undergo high-temperature. Constr. Build. Mater. 162 (2018), 345–358.
    • (2018) Constr. Build. Mater. , vol.162 , pp. 345-358
    • Li, L.1    Wang, Q.2    Zhang, G.3    Shi, L.4    Dong, J.5    Jia, P.6
  • 23
    • 85019093429 scopus 로고    scopus 로고
    • Comparative analysis of image binarization methods for crack identification in concrete structures
    • Kim, H., Ahn, E., Cho, S., Shin, M., Sim, S.H., Comparative analysis of image binarization methods for crack identification in concrete structures. Cem. Concr. Res. 99 (2017), 53–61.
    • (2017) Cem. Concr. Res. , vol.99 , pp. 53-61
    • Kim, H.1    Ahn, E.2    Cho, S.3    Shin, M.4    Sim, S.H.5
  • 25
    • 33747175931 scopus 로고    scopus 로고
    • Wavelet transform for structural health monitoring: a compendium of uses and features
    • Taha, M.R., Noureldin, A., Lucero, J.L., Baca, T.J., Wavelet transform for structural health monitoring: a compendium of uses and features. Struct. Health Monit. 5:3 (2006), 267–295.
    • (2006) Struct. Health Monit. , vol.5 , Issue.3 , pp. 267-295
    • Taha, M.R.1    Noureldin, A.2    Lucero, J.L.3    Baca, T.J.4
  • 26
    • 85051399784 scopus 로고
    • Detection of defects in colour texture surfaces
    • IAPR Workshop on Machine Vision Applications, Kawasaki.
    • J. Kittler, R. Marik, M. Mirmehdi, M. Petrou, J. Song, Detection of defects in colour texture surfaces, in: IAPR Workshop on Machine Vision Applications, Kawasaki, 1994.
    • (1994)
    • Kittler, J.1    Marik, R.2    Mirmehdi, M.3    Petrou, M.4    Song, J.5
  • 27
    • 4043147528 scopus 로고    scopus 로고
    • Analysis of edge-detection techniques for crack identification in bridges
    • Abdel-Qader, I., Abudayyeh, P., Kelly, M.E., Analysis of edge-detection techniques for crack identification in bridges. J. Comput. Civil Eng. 17:4 (2003), 255–263.
    • (2003) J. Comput. Civil Eng. , vol.17 , Issue.4 , pp. 255-263
    • Abdel-Qader, I.1    Abudayyeh, P.2    Kelly, M.E.3
  • 28
    • 84957818848 scopus 로고    scopus 로고
    • Multifractal analysis of crack patterns in reinforced concrete shear walls
    • Ebrahimkhanlou, A., Farhidzadeh, A., Salamone, S., Multifractal analysis of crack patterns in reinforced concrete shear walls. Struct. Health Monit. 15:1 (2016), 81–92.
    • (2016) Struct. Health Monit. , vol.15 , Issue.1 , pp. 81-92
    • Ebrahimkhanlou, A.1    Farhidzadeh, A.2    Salamone, S.3
  • 30
    • 84863754596 scopus 로고    scopus 로고
    • Intelligent crack detecting algorithm on the concrete crack image using neural network
    • Proceedings of the 28th International Symposium on Automation and Robotics in Construction, Seoul.
    • H. Moon, J. Kim, Intelligent crack detecting algorithm on the concrete crack image using neural network, in: Proceedings of the 28th International Symposium on Automation and Robotics in Construction, Seoul, 2011.
    • (2011)
    • Moon, H.1    Kim, J.2
  • 31
    • 84911482396 scopus 로고    scopus 로고
    • A robotic crack inspection and mapping system for bridge deck maintenance
    • Lim, R.S., La, H.M., Sheng, W., A robotic crack inspection and mapping system for bridge deck maintenance. IEEE Trans. Autom. Sci. Eng. 11:2 (2014), 367–378.
    • (2014) IEEE Trans. Autom. Sci. Eng. , vol.11 , Issue.2 , pp. 367-378
    • Lim, R.S.1    La, H.M.2    Sheng, W.3
  • 32
    • 85045295116 scopus 로고    scopus 로고
    • Development of crack detection system with unmanned aerial vehicles and digital image processing
    • Advances in Structural Engineering and Mechanics (ASEM15), Incheon.
    • J.W. Kim, S.B. Kim, J.C. Park, J.W. Nam, Development of crack detection system with unmanned aerial vehicles and digital image processing, in: Advances in Structural Engineering and Mechanics (ASEM15), Incheon, 2015.
    • (2015)
    • Kim, J.W.1    Kim, S.B.2    Park, J.C.3    Nam, J.W.4
  • 33
    • 84959450438 scopus 로고    scopus 로고
    • Detection crack in image using Otsu method and multiple filtering in image processing techniques
    • Talab, A.M.A., Huang, Z., Xi, F., HaiMing, L., Detection crack in image using Otsu method and multiple filtering in image processing techniques. Optik-Int. J. Light Electron Opt. 127:3 (2016), 1030–1033.
    • (2016) Optik-Int. J. Light Electron Opt. , vol.127 , Issue.3 , pp. 1030-1033
    • Talab, A.M.A.1    Huang, Z.2    Xi, F.3    HaiMing, L.4
  • 34
    • 85034055297 scopus 로고    scopus 로고
    • Comparing automated image-based crack detection techniques in spatial and frequency domains
    • Proceedings of the 26th American Society of Nondestructive Testing Reseach Symposium, Jacksonville, FL.
    • S. Dorafshan, M. Maguire, M. Chang, Comparing automated image-based crack detection techniques in spatial and frequency domains, in: Proceedings of the 26th American Society of Nondestructive Testing Reseach Symposium, Jacksonville, FL, 2017.
    • (2017)
    • Dorafshan, S.1    Maguire, M.2    Chang, M.3
  • 35
    • 85051390617 scopus 로고    scopus 로고
    • Autonomous detection of concrete cracks on bridge decks and fatigue cracks on steel members
    • Digital Imaging 2017, Mashantucket, CT.
    • S. Dorafshan, M. Maguire, Autonomous detection of concrete cracks on bridge decks and fatigue cracks on steel members, in: Digital Imaging 2017, Mashantucket, CT, 2017.
    • (2017)
    • Dorafshan, S.1    Maguire, M.2
  • 36
    • 85028546617 scopus 로고    scopus 로고
    • Automatic crack detection on concrete images using segmentation via fuzy C-means clustering
    • Proceedings of the 2017 International Conference on Applied System Innovation, Sapporo.
    • Y. Noh, D. Koo, Y. M. Kang, D. Park, D. Lee, Automatic crack detection on concrete images using segmentation via fuzy C-means clustering, in: Proceedings of the 2017 International Conference on Applied System Innovation, Sapporo, 2017.
    • (2017)
    • Noh, Y.1    Koo, D.2    Kang, Y.M.3    Park, D.4    Lee, D.5
  • 37
    • 84874583652 scopus 로고    scopus 로고
    • Crack detection in concrete surfaces using image processing, fuzzy logic, and neural networks
    • In 2012 IEEE Fifth International Conference on Advanced Computational Intelligence (ICACI), Nanjing, China.
    • G.K. Choudhary, S. Dey, Crack detection in concrete surfaces using image processing, fuzzy logic, and neural networks, in: In 2012 IEEE Fifth International Conference on Advanced Computational Intelligence (ICACI), Nanjing, China, 2012.
    • (2012)
    • Choudhary, G.K.1    Dey, S.2
  • 39
    • 85017098035 scopus 로고    scopus 로고
    • Deep learning-based crack damage detection using convolutional neural networks
    • Cha, Y.J., Choi, W., Büyüköztürk, O., Deep learning-based crack damage detection using convolutional neural networks. Comput.-Aided Civil Infrastruct. Eng. 32:5 (2017), 361–378.
    • (2017) Comput.-Aided Civil Infrastruct. Eng. , vol.32 , Issue.5 , pp. 361-378
    • Cha, Y.J.1    Choi, W.2    Büyüköztürk, O.3
  • 40
    • 85053861869 scopus 로고    scopus 로고
    • Deep learning neural networks for suas-assisted structural inspections: feasibility and application
    • ICUAS 2018, Dallas, TX.
    • S. Dorafshan, C. Coopmans, R.J. Thomas, M. Maguire, Deep learning neural networks for suas-assisted structural inspections: feasibility and application, in: ICUAS 2018, Dallas, TX, 2018.
    • (2018)
    • Dorafshan, S.1    Coopmans, C.2    Thomas, R.J.3    Maguire, M.4
  • 41
    • 85039860864 scopus 로고    scopus 로고
    • Crack detection using image processing: a critical review and analysis
    • (in press)
    • Mohan, A., Poobal, S., Crack detection using image processing: a critical review and analysis. (Alexandria Eng. J., 2017 in press).
    • (2017) Alexandria Eng. J.
    • Mohan, A.1    Poobal, S.2
  • 42
    • 85051381714 scopus 로고    scopus 로고
    • SDNET2018: A Concrete Crack Image Dataset for Machine Learning Applications
    • Utah State Universiy Logan
    • Maguire, M., Dorafshan, S., Thomas, R., SDNET2018: A Concrete Crack Image Dataset for Machine Learning Applications. 2018, Utah State Universiy, Logan.
    • (2018)
    • Maguire, M.1    Dorafshan, S.2    Thomas, R.3
  • 43
  • 44
    • 84952360878 scopus 로고    scopus 로고
    • Improvement of crack-detection accuracy using a novel crack defragmentation technique in image-based road assessment
    • Wu, L., Mokhtari, S., Nazef, A., Nam, B., Yun, H.B., Improvement of crack-detection accuracy using a novel crack defragmentation technique in image-based road assessment. J. Comput. Civil Eng., 30(1), 2014, pp.
    • (2014) J. Comput. Civil Eng. , vol.30 , Issue.1
    • Wu, L.1    Mokhtari, S.2    Nazef, A.3    Nam, B.4    Yun, H.B.5
  • 45
    • 84910651844 scopus 로고    scopus 로고
    • Deep learning in neural networks: an overview
    • Schmidhuber, J., Deep learning in neural networks: an overview. Neural Networks 61 (2015), 85–117.
    • (2015) Neural Networks , vol.61 , pp. 85-117
    • Schmidhuber, J.1
  • 46
    • 84876231242 scopus 로고    scopus 로고
    • Imagenet classification with deep convolutional neural networks
    • Advances in Neural Information Processing Systems
    • A. Krizhevsky, I. Sutskever, G.E. Hinton, Imagenet classification with deep convolutional neural networks, in: Advances in Neural Information Processing Systems, 2012, pp. 1097–1105.
    • (2012) , pp. 1097-1105
    • Krizhevsky, A.1    Sutskever, I.2    Hinton, G.E.3
  • 48
    • 84986274465 scopus 로고    scopus 로고
    • Deep residual learning for image recognition
    • Proceedings of the IEEE conference on computer vision and pattern recognition
    • K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recognition, in: Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 770–778.
    • He, K.1    Zhang, X.2    Ren, S.3    Sun, J.4
  • 49
    • 72249100259 scopus 로고    scopus 로고
    • Imagenet: A large-scale hierarchical image database
    • IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Miami, FL.
    • J. Deng, W. Dong, R. Socher, L. J. Li, K. Li, L. Fei-Fei, Imagenet: A large-scale hierarchical image database, in: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Miami, FL, 2009.
    • (2009)
    • Deng, J.1    Dong, W.2    Socher, R.3    Li, L.J.4    Li, K.5    Fei-Fei, L.6
  • 50
    • 84986274465 scopus 로고    scopus 로고
    • Deep residual learning for image recognition
    • IEEE Conference on Computer Vision and Pattern Recognition, Seattle. WA.
    • K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recognition, in: IEEE Conference on Computer Vision and Pattern Recognition, Seattle. WA, 2016.
    • (2016)
    • He, K.1    Zhang, X.2    Ren, S.3    Sun, J.4
  • 52
    • 85006722293 scopus 로고    scopus 로고
    • Road crack detection using deep convolutional neural network
    • Image Processing (ICIP) IEEE International Conference on.
    • L. Zhang, F. Yang, Y.D. Zhang, Y.J. Zhu, Road crack detection using deep convolutional neural network, in: Image Processing (ICIP), 2016 IEEE International Conference on, 2016.
    • (2016)
    • Zhang, L.1    Yang, F.2    Zhang, Y.D.3    Zhu, Y.J.4
  • 54
    • 85021994241 scopus 로고    scopus 로고
    • NB-CNN: deep learning-based crack detection using convolutional neural network and Naïve bayes data fusion
    • Chen, F.C., Jahanshahi, M.R., NB-CNN: deep learning-based crack detection using convolutional neural network and Naïve bayes data fusion. IEEE Trans. Indus. Electron., 2017.
    • (2017) IEEE Trans. Indus. Electron.
    • Chen, F.C.1    Jahanshahi, M.R.2
  • 55
    • 85053644257 scopus 로고    scopus 로고
    • Evaluation of deep learning approaches based on convolutional neural networks for corrosion detection
    • p. 1475921717737051
    • Atha, D.J., Jahanshahi, M.R., Evaluation of deep learning approaches based on convolutional neural networks for corrosion detection. Struct. Health Monit., 2017 p. 1475921717737051.
    • (2017) Struct. Health Monit.
    • Atha, D.J.1    Jahanshahi, M.R.2
  • 56
    • 85044736143 scopus 로고    scopus 로고
    • Automated defect classification in sewer closed circuit television inspections using deep convolutional neural networks
    • Kumar, S.S., Abraham, D.M., Jahanshahi, M.R., Iseley, T., Starr, J., Automated defect classification in sewer closed circuit television inspections using deep convolutional neural networks. Autom. Constr. 91 (2018), 273–283.
    • (2018) Autom. Constr. , vol.91 , pp. 273-283
    • Kumar, S.S.1    Abraham, D.M.2    Jahanshahi, M.R.3    Iseley, T.4    Starr, J.5
  • 57
    • 85077149682 scopus 로고    scopus 로고
    • Single-sensor acoustic emission source localization in plate-like structures using deep learning
    • Ebrahimkhanlou, A., Salamone, S., Single-sensor acoustic emission source localization in plate-like structures using deep learning. Aerospace, 5(2), 2018, 50.
    • (2018) Aerospace , vol.5 , Issue.2 , pp. 50
    • Ebrahimkhanlou, A.1    Salamone, S.2
  • 58
    • 85061020372 scopus 로고    scopus 로고
    • Computer vision and deep learning–based data anomaly detection method for structural health monitoring
    • p. 1475921718757405
    • Bao, Y., Tang, Z., Li, H., Zhang, Y., Computer vision and deep learning–based data anomaly detection method for structural health monitoring. Struct. Health Monit., 2018 p. 1475921718757405.
    • (2018) Struct. Health Monit.
    • Bao, Y.1    Tang, Z.2    Li, H.3    Zhang, Y.4
  • 59
    • 85047630642 scopus 로고    scopus 로고
    • Autonomous UAVs for structural health monitoring using deep learning and an ultrasonic beacon system with geo-tagging
    • Kang, D., Cha, Y.J., Autonomous UAVs for structural health monitoring using deep learning and an ultrasonic beacon system with geo-tagging. Comp.-Aided Civil Infrastruct. Eng., 2018.
    • (2018) Comp.-Aided Civil Infrastruct. Eng.
    • Kang, D.1    Cha, Y.J.2
  • 61
    • 85051380535 scopus 로고    scopus 로고
    • A guide to convolution arithmetic for deep learning, arXiv preprint arXiv:1603.07285.
    • V. Dumoulin, F. Visin, A guide to convolution arithmetic for deep learning, arXiv preprint arXiv:1603.07285.
    • Dumoulin, V.1    Visin, F.2
  • 62
    • 85051392473 scopus 로고    scopus 로고
    • J. J. and Y. S., Stanford University, [Online]. Available: [Accessed 21 03 2018].
    • Fei-Fei L., J. J and Y. S., Stanford University, 2017. [Online]. Available: http://cs231n.stanford.edu/. [Accessed 21 03 2018].
    • (2017)
    • Fei-Fei, L.1
  • 63
    • 84969962996 scopus 로고    scopus 로고
    • Deep convolutional neural networks for computer-aided detection: CNN architectures, dataset characteristics and transfer learning
    • Shin, H.C., Roth, H.R., Gao, M., Lu, L., Xu, Z., Nogues, I., Summers, R.M., Deep convolutional neural networks for computer-aided detection: CNN architectures, dataset characteristics and transfer learning. IEEE Trans. Med. Imag. 35:5 (2016), 1285–1298.
    • (2016) IEEE Trans. Med. Imag. , vol.35 , Issue.5 , pp. 1285-1298
    • Shin, H.C.1    Roth, H.R.2    Gao, M.3    Lu, L.4    Xu, Z.5    Nogues, I.6    Summers, R.M.7


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.