-
1
-
-
84923003919
-
Henipavirus pathogenesis and antiviral approaches
-
Mathieu C, Horvat B. Henipavirus pathogenesis and antiviral approaches. Expert Rev Anti Infect Ther 2015; 13:343-54.
-
(2015)
Expert Rev Anti Infect Ther
, vol.13
, pp. 343-354
-
-
Mathieu, C.1
Horvat, B.2
-
3
-
-
84866153524
-
Cedar virus: A novel Henipavirus isolated from Australian bats
-
Marsh GA, de Jong C, Barr JA, et al. Cedar virus: a novel Henipavirus isolated from Australian bats. PLoS Pathog 2012; 8:e1002836.
-
(2012)
PLoS Pathog
, vol.8
, pp. e1002836
-
-
Marsh, G.A.1
De Jong, C.2
Barr, J.A.3
-
4
-
-
84881485046
-
The pandemic potential of Nipah virus
-
Luby SP. The pandemic potential of Nipah virus. Antiviral Res 2013; 100:38-43.
-
(2013)
Antiviral Res
, vol.100
, pp. 38-43
-
-
Luby, S.P.1
-
5
-
-
84894225010
-
Hendra virus vaccine, a one health approach to protecting horse, human, and environmental health
-
Middleton D, Pallister J, Klein R, et al. Hendra virus vaccine, a one health approach to protecting horse, human, and environmental health. Emerg Infect Dis 2014; 20:372-9.
-
(2014)
Emerg Infect Dis
, vol.20
, pp. 372-379
-
-
Middleton, D.1
Pallister, J.2
Klein, R.3
-
6
-
-
85016546799
-
Protection from Hendra virus infection with Canarypox recombinant vaccine
-
Guillaume-Vasselin V, Lemaitre L, Dhondt KP, et al. Protection from Hendra virus infection with Canarypox recombinant vaccine. NPJ Vaccines 2016; 1:16003.
-
(2016)
NPJ Vaccines
, vol.1
, pp. 16003
-
-
Guillaume-Vasselin, V.1
Lemaitre, L.2
Dhondt, K.P.3
-
7
-
-
84961184231
-
Status of vaccine research and development of vaccines for Nipah virus
-
Satterfield BA, Dawes BE, Milligan GN. Status of vaccine research and development of vaccines for Nipah virus. Vaccine 2016; 34:2971-5.
-
(2016)
Vaccine
, vol.34
, pp. 2971-2975
-
-
Satterfield, B.A.1
Dawes, B.E.2
Milligan, G.N.3
-
8
-
-
84981710203
-
Pathogenic differences between Nipah virus Bangladesh and Malaysia strains in primates: Implications for antibody therapy
-
Mire CE, Satterfield BA, Geisbert JB, et al. Pathogenic differences between Nipah virus Bangladesh and Malaysia strains in primates: implications for antibody therapy. Sci Rep 2016; 6:30916.
-
(2016)
Sci Rep
, vol.6
, pp. 30916
-
-
Mire, C.E.1
Satterfield, B.A.2
Geisbert, J.B.3
-
9
-
-
0035034365
-
Molecular biology of Hendra and Nipah viruses
-
Wang L, Harcourt BH, Yu M, et al. Molecular biology of Hendra and Nipah viruses. Microbes Infect 2001; 3:279-87.
-
(2001)
Microbes Infect
, vol.3
, pp. 279-287
-
-
Wang, L.1
Harcourt, B.H.2
Yu, M.3
-
10
-
-
78449243403
-
Inhibition of Nipah virus infection in vivo: Targeting an early stage of paramyxovirus fusion activation during viral entry
-
Porotto M, Rockx B, Yokoyama CC, et al. Inhibition of Nipah virus infection in vivo: targeting an early stage of paramyxovirus fusion activation during viral entry. PLoS Pathog 2010; 6:e1001168.
-
(2010)
PLoS Pathog
, vol.6
, pp. e1001168
-
-
Porotto, M.1
Rockx, B.2
Yokoyama, C.C.3
-
11
-
-
85033781360
-
Broad spectrum antiviral activity for paramyxoviruses is modulated by biophysical properties of fusion inhibitory peptides
-
Mathieu C, Augusto MT, Niewiesk S, et al. Broad spectrum antiviral activity for paramyxoviruses is modulated by biophysical properties of fusion inhibitory peptides. Sci Rep 2017; 7:43610.
-
(2017)
Sci Rep
, vol.7
, pp. 43610
-
-
Mathieu, C.1
Augusto, M.T.2
Niewiesk, S.3
-
12
-
-
85008214612
-
In vivo efficacy of measles virus fusion protein-derived peptides is modulated by the properties of self-assembly and membrane residence
-
Figueira TN, Palermo LM, Veiga AS, et al. In vivo efficacy of measles virus fusion protein-derived peptides is modulated by the properties of self-assembly and membrane residence. J Virol 2017; 91: doi:10.1128/JVI.01554-16.
-
(2017)
J Virol
, vol.91
-
-
Figueira, T.N.1
Palermo, L.M.2
Veiga, A.S.3
-
13
-
-
85037981735
-
Antiviral lipopeptide-cell membrane interaction is influenced by PEG linker length
-
Augusto MT, Hollmann A, Porotto M, Moscona A, Santos NC. Antiviral lipopeptide-cell membrane interaction is influenced by PEG linker length. Molecules 2017; 22: doi: 10.3390/molecules22071190.
-
(2017)
Molecules
, vol.22
-
-
Augusto, M.T.1
Hollmann, A.2
Porotto, M.3
Moscona, A.4
Santos, N.C.5
-
14
-
-
84876387969
-
Pathogenesis of Hendra and Nipah virus infection in humans
-
Escaffre O, Borisevich V, Rockx B. Pathogenesis of Hendra and Nipah virus infection in humans. J Infect Dev Ctries 2013; 7:308-11.
-
(2013)
J Infect Dev Ctries
, vol.7
, pp. 308-311
-
-
Escaffre, O.1
Borisevich, V.2
Rockx, B.3
-
15
-
-
84874754247
-
Henipavirus pathogenesis in human respiratory epithelial cells
-
Escaffre O, Borisevich V, Carmical JR, et al. Henipavirus pathogenesis in human respiratory epithelial cells. J Virol 2013; 87:3284-94.
-
(2013)
J Virol
, vol.87
, pp. 3284-3294
-
-
Escaffre, O.1
Borisevich, V.2
Carmical, J.R.3
-
16
-
-
84901373945
-
A human lung xenograft mouse model of Nipah virus infection
-
Valbuena G, Halliday H, Borisevich V, Goez Y, Rockx B. A human lung xenograft mouse model of Nipah virus infection. PLoS Pathog 2014; 10:e1004063.
-
(2014)
PLoS Pathog
, vol.10
, pp. e1004063
-
-
Valbuena, G.1
Halliday, H.2
Borisevich, V.3
Goez, Y.4
Rockx, B.5
-
17
-
-
84920825198
-
Prevention of measles virus infection by intranasal delivery of fusion inhibitor peptides
-
Mathieu C, Huey D, Jurgens E, et al. Prevention of measles virus infection by intranasal delivery of fusion inhibitor peptides. J Virol 2015; 89:1143-55.
-
(2015)
J Virol
, vol.89
, pp. 1143-1155
-
-
Mathieu, C.1
Huey, D.2
Jurgens, E.3
-
18
-
-
85019028579
-
Loss in lung volume and changes in the immune response demonstrate disease progression in African green monkeys infected by small-particle aerosol and intratracheal exposure to Nipah virus
-
Cong Y, Lentz MR, Lara A, et al. Loss in lung volume and changes in the immune response demonstrate disease progression in African green monkeys infected by small-particle aerosol and intratracheal exposure to Nipah virus. PLoS Negl Trop Dis 2017; 11:e0005532.
-
(2017)
PLoS Negl Trop Dis
, vol.11
, pp. e0005532
-
-
Cong, Y.1
Lentz, M.R.2
Lara, A.3
-
19
-
-
77953313232
-
Viral entry inhibitors targeted to the membrane site of action
-
Porotto M, Yokoyama CC, Palermo LM, et al. Viral entry inhibitors targeted to the membrane site of action. J Virol 2010; 84:6760-8.
-
(2010)
J Virol
, vol.84
, pp. 6760-6768
-
-
Porotto, M.1
Yokoyama, C.C.2
Palermo, L.M.3
-
20
-
-
65249085618
-
Addition of a cholesterol group to an HIV-1 peptide fusion inhibitor dramatically increases its antiviral potency
-
Ingallinella P, Bianchi E, Ladwa NA, et al. Addition of a cholesterol group to an HIV-1 peptide fusion inhibitor dramatically increases its antiviral potency. Proc Natl Acad Sci U S A 2009; 106:5801-6.
-
(2009)
Proc Natl Acad Sci U S A
, vol.106
, pp. 5801-5806
-
-
Ingallinella, P.1
Bianchi, E.2
Ladwa, N.A.3
-
21
-
-
9144273525
-
Nipah virus: Vaccination and passive protection studies in a hamster model
-
Guillaume V, Contamin H, Loth P, et al. Nipah virus: vaccination and passive protection studies in a hamster model. J Virol 2004; 78:834-40.
-
(2004)
J Virol
, vol.78
, pp. 834-840
-
-
Guillaume, V.1
Contamin, H.2
Loth, P.3
-
22
-
-
0029914507
-
Alpha complementation of LacZ in mammalian cells
-
Moosmann P, Rusconi S. Alpha complementation of LacZ in mammalian cells. Nucleic Acids Res 1996; 24:1171-2.
-
(1996)
Nucleic Acids Res
, vol.24
, pp. 1171-1172
-
-
Moosmann, P.1
Rusconi, S.2
-
23
-
-
33947363286
-
A second receptor binding site on human parainfluenza virus type 3 hemagglutinin-neuraminidase contributes to activation of the fusion mechanism
-
Porotto M, Fornabaio M, Kellogg GE, Moscona A. A second receptor binding site on human parainfluenza virus type 3 hemagglutinin-neuraminidase contributes to activation of the fusion mechanism. J Virol 2007; 81:3216-28.
-
(2007)
J Virol
, vol.81
, pp. 3216-3228
-
-
Porotto, M.1
Fornabaio, M.2
Kellogg, G.E.3
Moscona, A.4
-
24
-
-
84888062597
-
Fatal measles virus infection prevented by brain-penetrant fusion inhibitors
-
Welsch JC, Talekar A, Mathieu C, et al. Fatal measles virus infection prevented by brain-penetrant fusion inhibitors. J Virol 2013; 87:13785-94.
-
(2013)
J Virol
, vol.87
, pp. 13785-13794
-
-
Welsch, J.C.1
Talekar, A.2
Mathieu, C.3
-
25
-
-
42449147950
-
Wild type measles virus attenuation independent of type i IFN
-
Druelle J, Sellin CI, Waku-Kouomou D, Horvat B, Wild FT. Wild type measles virus attenuation independent of type I IFN. Virol J 2008; 5:22.
-
(2008)
Virol J
, vol.5
, pp. 22
-
-
Druelle, J.1
Sellin, C.I.2
Waku-Kouomou, D.3
Horvat, B.4
Wild, F.T.5
-
26
-
-
84872941122
-
Type i interferon signaling protects mice from lethal henipavirus infection
-
Dhondt KP, Mathieu C, Chalons M, et al. Type I interferon signaling protects mice from lethal henipavirus infection. J Infect Dis 2013; 207:142-51.
-
(2013)
J Infect Dis
, vol.207
, pp. 142-151
-
-
Dhondt, K.P.1
Mathieu, C.2
Chalons, M.3
-
27
-
-
33748948794
-
Inhibition of hendra virus fusion
-
Porotto M, Doctor L, Carta P, et al. Inhibition of hendra virus fusion. J Virol 2006; 80:9837-49.
-
(2006)
J Virol
, vol.80
, pp. 9837-9849
-
-
Porotto, M.1
Doctor, L.2
Carta, P.3
-
28
-
-
34648830863
-
Molecular determinants of antiviral potency of paramyxovirus entry inhibitors
-
Porotto M, Carta P, Deng Y, et al. Molecular determinants of antiviral potency of paramyxovirus entry inhibitors. J Virol 2007; 81:10567-74.
-
(2007)
J Virol
, vol.81
, pp. 10567-10574
-
-
Porotto, M.1
Carta, P.2
Deng, Y.3
-
29
-
-
77953313232
-
Viral entry inhibitors targeted to the membrane site of action
-
Porotto M, Yokoyama CC, Palermo LM, et al. Viral entry inhibitors targeted to the membrane site of action. J Virol 2010; 84:6760-8.
-
(2010)
J Virol
, vol.84
, pp. 6760-6768
-
-
Porotto, M.1
Yokoyama, C.C.2
Palermo, L.M.3
-
30
-
-
84861215300
-
A general strategy to endow natural fusion-protein-derived peptides with potent antiviral activity
-
Pessi A, Langella A, Capito E, et al. A general strategy to endow natural fusion-protein-derived peptides with potent antiviral activity. PLoS One 2012; 7:e36833.
-
(2012)
PLoS One
, vol.7
, pp. e36833
-
-
Pessi, A.1
Langella, A.2
Capito, E.3
-
31
-
-
84877308415
-
Single molecular weight discrete PEG compounds: Emerging roles in molecular diagnostics, imaging and therapeutics
-
Povoski SP, Davis PD, Colcher D, Martin EW Jr. Single molecular weight discrete PEG compounds: emerging roles in molecular diagnostics, imaging and therapeutics. Expert Rev Mol Diagn 2013; 13:315-9.
-
(2013)
Expert Rev Mol Diagn
, vol.13
, pp. 315-319
-
-
Povoski, S.P.1
Davis, P.D.2
Colcher, D.3
Mew, R.J.4
-
32
-
-
0142244178
-
A golden hamster model for human acute Nipah virus infection
-
Wong KT, Grosjean I, Brisson C, et al. A golden hamster model for human acute Nipah virus infection. Am J Pathol 2003; 163:2127-37.
-
(2003)
Am J Pathol
, vol.163
, pp. 2127-2137
-
-
Wong, K.T.1
Grosjean, I.2
Brisson, C.3
-
33
-
-
78449243403
-
Inhibition of Nipah virus infection in vivo: Targeting an early stage of paramyxovirus fusion activation during viral entry
-
Porotto M, Rockx B, Yokoyama CC, et al. Inhibition of Nipah virus infection in vivo: targeting an early stage of paramyxovirus fusion activation during viral entry. PLoS Pathog 2010; 6:e1001168.
-
(2010)
PLoS Pathog
, vol.6
, pp. e1001168
-
-
Porotto, M.1
Rockx, B.2
Yokoyama, C.C.3
-
34
-
-
84923377175
-
Detailed analysis of the African green monkey model of Nipah virus disease
-
Johnston SC, Briese T, Bell TM, et al. Detailed analysis of the African green monkey model of Nipah virus disease. PLoS One 2015; 10:e0117817.
-
(2015)
PLoS One
, vol.10
, pp. e0117817
-
-
Johnston, S.C.1
Briese, T.2
Bell, T.M.3
-
35
-
-
77649099529
-
Experimental infection of squirrel monkeys with Nipah virus
-
Marianneau P, Guillaume V, Wong T, et al. Experimental infection of squirrel monkeys with Nipah virus. Emerg Infect Dis 2010; 16:507-10.
-
(2010)
Emerg Infect Dis
, vol.16
, pp. 507-510
-
-
Marianneau, P.1
Guillaume, V.2
Wong, T.3
-
36
-
-
84859500131
-
Henipavirus outbreaks to antivirals: The current status of potential therapeutics
-
Broder CC. Henipavirus outbreaks to antivirals: the current status of potential therapeutics. Curr Opin Virol 2012; 2:176-87.
-
(2012)
Curr Opin Virol
, vol.2
, pp. 176-187
-
-
Broder, C.C.1
-
37
-
-
80054784936
-
Containing the contagion: Treating the virus that inspired the film
-
Lee B. Containing the contagion: treating the virus that inspired the film. Sci Transl Med 2011; 3:105fs6.
-
(2011)
Sci Transl Med
, vol.3
, pp. 105fs6
-
-
Lee, B.1
-
38
-
-
84863071256
-
Characterization of Nipah virus from outbreaks in Bangladesh, 2008-2010
-
Lo MK, Lowe L, Hummel KB, et al. Characterization of Nipah virus from outbreaks in Bangladesh, 2008-2010. Emerg Infect Dis 2012; 18:248-55.
-
(2012)
Emerg Infect Dis
, vol.18
, pp. 248-255
-
-
Lo, M.K.1
Lowe, L.2
Hummel, K.B.3
-
39
-
-
1542378923
-
Emerging infectious diseases Nipah virus (or a cousin) strikes again
-
Enserink M. Emerging infectious diseases. Nipah virus (or a cousin) strikes again. Science 2004; 303:1121.
-
(2004)
Science
, vol.303
, pp. 1121
-
-
Enserink, M.1
-
40
-
-
2342476622
-
Fatal fruit bat virus sparks epidemics in Southern Asia
-
Butler D. Fatal fruit bat virus sparks epidemics in Southern Asia. Nature 2004; 429:7.
-
(2004)
Nature
, vol.429
, pp. 7
-
-
Butler, D.1
-
41
-
-
9744233639
-
Nipah virus encephalitis reemergence, Bangladesh
-
Hsu VP, Hossain MJ, Parashar UD, et al. Nipah virus encephalitis reemergence, Bangladesh. Emerg Infect Dis 2004; 10:2082-7.
-
(2004)
Emerg Infect Dis
, vol.10
, pp. 2082-2087
-
-
Hsu, V.P.1
Hossain, M.J.2
Parashar, U.D.3
-
42
-
-
77957294138
-
Nipah virus outbreak with person-to-person transmission in a district of Bangladesh, 2007
-
Homaira N, Rahman M, Hossain MJ, et al. Nipah virus outbreak with person-to-person transmission in a district of Bangladesh, 2007. Epidemiol Infect 2010; 138:1630-6.
-
(2010)
Epidemiol Infect
, vol.138
, pp. 1630-1636
-
-
Homaira, N.1
Rahman, M.2
Hossain, M.J.3
-
43
-
-
0038823524
-
The genome sequence of the SARS-associated coronavirus
-
Marra MA, Jones SJ, Astell CR, et al. The genome sequence of the SARS-associated coronavirus. Science 2003; 300:1399-404.
-
(2003)
Science
, vol.300
, pp. 1399-1404
-
-
Marra, M.A.1
Jones, S.J.2
Astell, C.R.3
-
44
-
-
2942594156
-
Suppression of SARS-CoV entry by peptides corresponding to heptad regions on spike glycoprotein
-
Yuan K, Yi L, Chen J, et al. Suppression of SARS-CoV entry by peptides corresponding to heptad regions on spike glycoprotein. Biochem Biophys Res Commun 2004; 319:746-52.
-
(2004)
Biochem Biophys Res Commun
, vol.319
, pp. 746-752
-
-
Yuan, K.1
Yi, L.2
Chen, J.3
-
45
-
-
73549091727
-
Asymmetric deactivation of HIV-1 gp41 following fusion inhibitor binding
-
Kahle KM, Steger HK, Root MJ. Asymmetric deactivation of HIV-1 gp41 following fusion inhibitor binding. PLoS Pathog 2009; 5:e1000674.
-
(2009)
PLoS Pathog
, vol.5
, pp. e1000674
-
-
Kahle, K.M.1
Steger, H.K.2
Root, M.J.3
-
46
-
-
36749087580
-
Potent D-peptide inhibitors of HIV-1 entry
-
Welch BD, VanDemark AP, Heroux A, Hill CP, Kay MS. Potent D-peptide inhibitors of HIV-1 entry. Proc Natl Acad Sci U S A 2007; 104:16828-33.
-
(2007)
Proc Natl Acad Sci U S A
, vol.104
, pp. 16828-16833
-
-
Welch, B.D.1
VanDemark, A.P.2
Heroux, A.3
Hill, C.P.4
Kay, M.S.5
-
47
-
-
77957942154
-
Design of a potent D-peptide HIV-1 entry inhibitor with a strong barrier to resistance
-
Welch BD, Francis JN, Redman JS, et al. Design of a potent D-peptide HIV-1 entry inhibitor with a strong barrier to resistance. J Virol 2010; 84:11235-44.
-
(2010)
J Virol
, vol.84
, pp. 11235-11244
-
-
Welch, B.D.1
Francis, J.N.2
Redman, J.S.3
|