메뉴 건너뛰기




Volumn 2017-December, Issue , 2017, Pages 6468-6477

Gradient episodic memory for continual learning

Author keywords

[No Author keywords available]

Indexed keywords

CONTINUAL LEARNING; EPISODIC MEMORY; STATE OF THE ART; TEST ACCURACY; TRANSFER OF KNOWLEDGE;

EID: 85047021111     PISSN: 10495258     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (2304)

References (53)
  • 1
    • 85046994586 scopus 로고    scopus 로고
    • Expert gate: Lifelong learning with a network of experts
    • R. Aljundi, P. Chakravarty, and T. Tuytelaars. Expert gate: Lifelong learning with a network of experts. CVPR, 2016.
    • (2016) CVPR
    • Aljundi, R.1    Chakravarty, P.2    Tuytelaars, T.3
  • 2
    • 85018931463 scopus 로고    scopus 로고
    • Efficient representations for lifelong learning and autoencoding
    • M.-F. Balcan, A. Blum, and S. Vempola. Efficient representations for lifelong learning and autoencoding. COLT, 2015.
    • (2015) COLT
    • Balcan, M.-F.1    Blum, A.2    Vempola, S.3
  • 4
    • 14344277592 scopus 로고    scopus 로고
    • A model of inductive bias learning
    • J. Baxter. A model of inductive bias learning. JAIR, 2000.
    • (2000) JAIR
    • Baxter, J.1
  • 9
  • 10
    • 85047006131 scopus 로고    scopus 로고
    • Deep sequential neural networks
    • L. Denoyer and P. Gallinari. Deep sequential neural networks. EWRL, 2015.
    • (2015) EWRL
    • Denoyer, L.1    Gallinari, P.2
  • 12
    • 85083952626 scopus 로고    scopus 로고
    • Learning factored representations in a deep mixture of experts
    • D. Eigen, I. Sutskever, and M. Ranzato. Learning factored representations in a deep mixture of experts. ICLR, 2014.
    • (2014) ICLR
    • Eigen, D.1    Sutskever, I.2    Ranzato, M.3
  • 13
    • 0344983284 scopus 로고    scopus 로고
    • A Bayesian approach to unsupervised one-shot learning of object categories
    • L. Fei-Fei, R. Fergus, and P. Perona. A Bayesian approach to unsupervised one-shot learning of object categories. ICCV, 2003.
    • (2003) ICCV
    • Fei-Fei, L.1    Fergus, R.2    Perona, P.3
  • 15
    • 0032923221 scopus 로고    scopus 로고
    • Catastrophic forgetting in connectionist networks
    • R. M. French. Catastrophic forgetting in connectionist networks. Trends in cognitive sciences, 1999.
    • (1999) Trends in Cognitive Sciences
    • French, R.M.1
  • 22
    • 70450172710 scopus 로고    scopus 로고
    • Learning to detect unseen object classes by between-class attribute transfer
    • C. Lampert, H. Nickisch, and S. Harmeling. Learning to detect unseen object classes by between-class attribute transfer. CVPR, 2009.
    • (2009) CVPR
    • Lampert, C.1    Nickisch, H.2    Harmeling, S.3
  • 24
    • 84994641616 scopus 로고    scopus 로고
    • Learning without forgetting
    • Z. Li and D. Hoiem. Learning without forgetting. ECCV, 2016.
    • (2016) ECCV
    • Li, Z.1    Hoiem, D.2
  • 26
    • 0029340352 scopus 로고
    • Why there are complementary learning systems in the hippocampus and neocortex: Insights from the successes and failures of connectionist models of learning and memory
    • J. L. McClelland, B. L. McNaughton, and R. C. O'reilly. Why there are complementary learning systems in the hippocampus and neocortex: insights from the successes and failures of connectionist models of learning and memory. Psychological review, 1995.
    • (1995) Psychological Review
    • McClelland, J.L.1    McNaughton, B.L.2    O'Reilly, R.C.3
  • 27
    • 77957064197 scopus 로고
    • Catastrophic interference in connectionist networks: The sequential learning problem
    • M. McCloskey and N. J. Cohen. Catastrophic interference in connectionist networks: The sequential learning problem. Psychology of learning and motivation, 1989.
    • (1989) Psychology of Learning and Motivation
    • McCloskey, M.1    Cohen, N.J.2
  • 29
    • 84911449395 scopus 로고    scopus 로고
    • Learning and transferring mid-level image representations using convolutional neural networks
    • M. Oquab, L. Bottou, I. Laptev, and J. Sivic. Learning and transferring mid-level image representations using convolutional neural networks. CVPR, 2014.
    • (2014) CVPR
    • Oquab, M.1    Bottou, L.2    Laptev, I.3    Sivic, J.4
  • 31
    • 77956031473 scopus 로고    scopus 로고
    • A survey on transfer learning
    • S. J. Pan and Q. Yang. A survey on transfer learning. TKDE, 2010.
    • (2010) TKDE
    • Pan, S.J.1    Yang, Q.2
  • 32
    • 85019214594 scopus 로고    scopus 로고
    • Lifelong learning with weighted majority votes
    • A. Pentina and R. Urner. Lifelong learning with weighted majority votes. NIPS, 2016.
    • (2016) NIPS
    • Pentina, A.1    Urner, R.2
  • 36
    • 0025407225 scopus 로고
    • Connectionist models of recognition memory: Constraints imposed by learning and forgetting functions
    • R. Ratcliff. Connectionist models of recognition memory: Constraints imposed by learning and forgetting functions. Psychological review, 1990.
    • (1990) Psychological Review
    • Ratcliff, R.1
  • 39
    • 0031189347 scopus 로고    scopus 로고
    • CHILD: A first step towards continual learning
    • M. B. Ring. CHILD: A first step towards continual learning. Machine Learning, 1997.
    • (1997) Machine Learning
    • Ring, M.B.1
  • 41
    • 84897541086 scopus 로고    scopus 로고
    • ELLA: An efficient lifelong learning algorithm
    • P. Ruvolo and E. Eaton. ELLA: An Efficient Lifelong Learning Algorithm. ICML, 2013.
    • (2013) ICML
    • Ruvolo, P.1    Eaton, E.2
  • 48
    • 0041494227 scopus 로고    scopus 로고
    • Is learning the n-th thing any easier than learning the first?
    • S. Thrun. Is learning the n-th thing any easier than learning the first? NIPS, 1996.
    • (1996) NIPS
    • Thrun, S.1
  • 49
    • 0010687621 scopus 로고    scopus 로고
    • Lifelong learning algorithms
    • Springer
    • S. Thrun. Lifelong learning algorithms. In Learning to learn. Springer, 1998.
    • (1998) Learning to Learn
    • Thrun, S.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.