메뉴 건너뛰기




Volumn 3, Issue 3, 2016, Pages 206-239

Analytics, challenges and applications in big data environment: a survey

Author keywords

apache hadoop; big data; big data analytics; cloud computing; unstructured data

Indexed keywords


EID: 85045758579     PISSN: 23270012     EISSN: 23270039     Source Type: Journal    
DOI: 10.1080/23270012.2016.1186578     Document Type: Review
Times cited : (66)

References (160)
  • 1
    • 85057054686 scopus 로고    scopus 로고
    • . Aster data. http://www.asterdata.com
    • (2013) Aster Data
  • 2
    • 85057031516 scopus 로고    scopus 로고
    • . Greenplum. http://www.greenplum.com
    • (2013)
  • 3
    • 85056989095 scopus 로고    scopus 로고
    • . Netezza. http://www-01.ibm.com/software/data/netezza
    • (2013)
  • 4
    • 85056993062 scopus 로고    scopus 로고
    • . Vertica. http://www.vertica.com
    • (2013)
  • 5
    • 85057050390 scopus 로고    scopus 로고
    • Kosmosfs
    • . Kosmosfs. https://code.google.com/p/kosmosfs
    • (2014)
  • 6
    • 85057048824 scopus 로고    scopus 로고
    • . Teradata. http://www.teradata.com
    • (2014)
  • 11
    • 80955160447 scopus 로고    scopus 로고
    • That ‘internet of things’ thing
    • Ashton, K., (2009). That ‘internet of things’ thing. RFiD Journal, 22, 97–114
    • (2009) RFiD Journal , vol.22 , pp. 97-114
    • Ashton, K.1
  • 12
    • 85057006282 scopus 로고    scopus 로고
    • Amazon elastic compute cloud documentation
    • AWS, I., (2016). Amazon elastic compute cloud documentation. https://aws.amazon.com/documentation/ec2/
    • (2016)
    • Aws, I.1
  • 14
    • 34547676503 scopus 로고    scopus 로고
    • On-line anomaly detection of deployed software: a statistical machine learning approach
    • SOQUA 06), New York, NY, USA, 70–77. ACM, &
    • Baah, G. K., Gray, A., & Harrold, M. J., (2006). On-line anomaly detection of deployed software: a statistical machine learning approach. In Proceedings of the 3rd international workshop on Software quality assurance (pp. 70–77). (SOQUA '06), New York, NY, USA, 70–77. ACM
    • (2006) Proceedings of the 3rd international workshop on Software quality assurance , pp. 70-77
    • Baah, G.K.1    Gray, A.2    Harrold, M.J.3
  • 16
    • 85057063666 scopus 로고    scopus 로고
    • Big data and advanced analytics telecom: A multi-billion-doller revenue opporunity
    • Banerjee, A., (2013). Big data and advanced analytics in telecom: A multi-billion-doller revenue opporunity. www.huawei.com/ilink/en/download/HW_323807
    • (2013)
    • Banerjee, A.1
  • 18
    • 85076926134 scopus 로고    scopus 로고
    • Paper presented at the 9th USENIX Symposium on Operating Systems Design and Implementation (OSDI 10), Vancouver, BC, Canada, 47–60
    • Beaver, D., Kumar, S., Li, H. C., Sobel, J., Vajgel, P., et al. (2010). Finding a needle in haystack: Facebook’s photo storage. Paper presented at the 9th USENIX Symposium on Operating Systems Design and Implementation (OSDI '10), Vancouver, BC, Canada, pp. 47–60
    • (2010) Finding a needle in haystack: Facebook’s photo storage
    • Beaver, D.1    Kumar, S.2    Li, H.C.3    Sobel, J.4    Vajgel, P.5
  • 19
    • 85057039130 scopus 로고    scopus 로고
    • Making sense of big data insurance
    • Bharal, P., (2013). Making sense of big data in insurance. http://www.marklogic.com/resources/makingsenseofbigdataininsurance/resourcedownload/whitepapers
    • (2013)
    • Bharal, P.1
  • 20
    • 84963646349 scopus 로고    scopus 로고
    • Big data analytics with applications
    • Bi, Z., & Cochran, D., (2014). Big data analytics with applications. Journal of Management Analytics, 1, 249–265. doi: 10.1080/23270012.2014.992985
    • (2014) Journal of Management Analytics , vol.1 , pp. 249-265
    • Bi, Z.1    Cochran, D.2
  • 21
    • 84861170800 scopus 로고    scopus 로고
    • Probabilistic topic models
    • Blei, D. M., (2012). Probabilistic topic models. Communications of the ACM, 55, 77–84. doi: 10.1145/2133806.2133826
    • (2012) Communications of the ACM , vol.55 , pp. 77-84
    • Blei, D.M.1
  • 23
    • 81455136151 scopus 로고    scopus 로고
    • Data-intensive scalable computing for scientific applications
    • Bryant, R. E., (2011). Data-intensive scalable computing for scientific applications. Computing in Science & Engineering, 13, 25–33. doi: 10.1109/MCSE.2011.73
    • (2011) Computing in Science & Engineering , vol.13 , pp. 25-33
    • Bryant, R.E.1
  • 24
    • 85057005005 scopus 로고    scopus 로고
    • EBay study: How to build trust and improve the shopping experience
    • Carey, W. P., (2012). EBay study: How to build trust and improve the shopping experience. http://research.wpcarey.asu.edu/managing-it/ebay-study-how-to-build-trust-and-improve-the-shopping-experience
    • (2012)
    • Carey, W.P.1
  • 25
    • 79956072588 scopus 로고    scopus 로고
    • Scalable SQL and NoSQL data stores
    • Cattell, R., (2011). Scalable SQL and NoSQL data stores. ACM SIGMOD Record, 39, 12–27. doi: 10.1145/1978915.1978919
    • (2011) ACM SIGMOD Record , vol.39 , pp. 12-27
    • Cattell, R.1
  • 28
    • 84964675043 scopus 로고    scopus 로고
    • Finavistory: using narrative visualization to explain social and economic relationships in financial news
    • Hong Kong: IEEE, &
    • Chan, Y., & Qu, H., (2016). Finavistory: using narrative visualization to explain social and economic relationships in financial news. In 2016 International Conference on Big Data and Smart Computing (BigComp) (pp. 32–39). Hong Kong: IEEE
    • (2016) 2016 International Conference on Big Data and Smart Computing (BigComp) , pp. 32-39
    • Chan, Y.1    Qu, H.2
  • 29
    • 79961048653 scopus 로고    scopus 로고
    • An overview of business intelligence technology
    • Chaudhuri, S., Dayal, U., & Narasayya, V., (2011). An overview of business intelligence technology. Communications of the ACM, 54, 88–98. doi: 10.1145/1978542.1978562
    • (2011) Communications of the ACM , vol.54 , pp. 88-98
    • Chaudhuri, S.1    Dayal, U.2    Narasayya, V.3
  • 30
    • 84900800509 scopus 로고    scopus 로고
    • Data-intensive applications, challenges, techniques and technologies: A survey on big data
    • Chen, C. P., & Zhang, C.-Y., (2014). Data-intensive applications, challenges, techniques and technologies: A survey on big data. Information Sciences, 275, 314–347. doi: 10.1016/j.ins.2014.01.015
    • (2014) Information Sciences , vol.275 , pp. 314-347
    • Chen, C.P.1    Zhang, C.-Y.2
  • 31
    • 84953216263 scopus 로고    scopus 로고
    • Big data generation & acquisition
    • Cham: Springer, &
    • Chen, M., Mao, S., Zhang, Y., & Leung, V. C., (2014). Big data generation & acquisition. In Big Data (pp. 19–32). Cham: Springer
    • (2014) Big Data , pp. 19-32
    • Chen, M.1    Mao, S.2    Zhang, Y.3    Leung, V.C.4
  • 33
    • 85032759741 scopus 로고    scopus 로고
    • Decision learning: Data analytic learning with strategic decision making
    • Chen, Y., Jiang, C., Wang, C.-Y., Gao, Y., & Liu, K., (2016). Decision learning: Data analytic learning with strategic decision making. IEEE Signal Processing Magazine, 33(1), 37–56. doi: 10.1109/MSP.2015.2479895
    • (2016) IEEE Signal Processing Magazine , vol.33 , Issue.1 , pp. 37-56
    • Chen, Y.1    Jiang, C.2    Wang, C.-Y.3    Gao, Y.4    Liu, K.5
  • 35
    • 85057003856 scopus 로고    scopus 로고
    • Cloudera quickstart
    • Cloudera, I., (2015). Cloudera quickstart. http://www.cloudera.com/content/www/en-us/documentation/enterprise/latest/PDF/cloudera-quickstart.pdf
    • (2015)
    • Cloudera, I.1
  • 36
    • 85057007012 scopus 로고    scopus 로고
    • Consumers, big data, and online tracking the retail industry a case study of Walmart
    • CMJ (2013). Consumers, big data, and online tracking in the retail industry a case study of Walmart. http://centerformediajustice.org/wp-content/uploads/2014/06/WALMART_PRIVACY_.pdf
    • (2013)
  • 38
    • 85057069180 scopus 로고    scopus 로고
    • Data, data everywhere: A special report on managing information., 394(8671), 3–16
    • Cukier, K., (2010). Data, data everywhere: A special report on managing information. The Economist, 394(8671), 3–16
    • (2010) The Economist394
    • Cukier, K.1
  • 40
    • 84888616180 scopus 로고    scopus 로고
    • Wireless sensor networks for environmental research: A survey on limitations and challenges
    • Zagreb: IEEE, &
    • De La Piedra, A., Benitez-Capistros, F., Dominguez, F., & Touhafi, A., (2013). Wireless sensor networks for environmental research: A survey on limitations and challenges. In 2013 IEEE EUROCON (pp. 267–274). Zagreb: IEEE
    • (2013) 2013 IEEE EUROCON , pp. 267-274
    • De La Piedra, A.1    Benitez-Capistros, F.2    Dominguez, F.3    Touhafi, A.4
  • 41
    • 37549003336 scopus 로고    scopus 로고
    • MapReduce: simplified data processing on large clusters
    • Dean, J., & Ghemawat, S., (2008). MapReduce: simplified data processing on large clusters. Communications of the ACM, 51(1), 107–113. doi: 10.1145/1327452.1327492
    • (2008) Communications of the ACM , vol.51 , Issue.1 , pp. 107-113
    • Dean, J.1    Ghemawat, S.2
  • 44
    • 0026870271 scopus 로고
    • Parallel database systems: the future of high performance database systems
    • DeWitt, D., & Gray, J., (1992). Parallel database systems: the future of high performance database systems. Communications of the ACM, 35, 85–98. doi: 10.1145/129888.129894
    • (1992) Communications of the ACM , vol.35 , pp. 85-98
    • DeWitt, D.1    Gray, J.2
  • 45
    • 85056996279 scopus 로고    scopus 로고
    • Big data can see tomorrow today
    • DiFilippo, D., (2013). Big data can see tomorrow today. http://www.pwc.com/us/en/advisory-services/case-studies/technology/big-data-can-see-tomorrow.html
    • (2013)
    • DiFilippo, D.1
  • 47
    • 85057063557 scopus 로고    scopus 로고
    • The explosion of data
    • Evans, D., & Hutley, R., (2010). The explosion of data. http://www.cisco.com/c/dam/en_us/about/ac79/docs/pov/Data_Explosion_IBSG.pdf
    • (2010)
    • Evans, D.1    Hutley, R.2
  • 49
    • 84860519166 scopus 로고    scopus 로고
    • Interactions with big data analytics
    • Fisher, D., DeLine, R., Czerwinski, M., & Drucker, S., (2012). Interactions with big data analytics. Interactions, 19, 50–59. doi: 10.1145/2168931.2168943
    • (2012) Interactions , vol.19 , pp. 50-59
    • Fisher, D.1    DeLine, R.2    Czerwinski, M.3    Drucker, S.4
  • 50
    • 85057010417 scopus 로고    scopus 로고
    • Big data and transport understanding and assessing options
    • Forum, I. T., (2015). Big data and transport understanding and assessing options. http://www.internationaltransportforum.org/pub/pdf/15CPB_BigData.pdf
    • (2015)
    • Forum, I.T.1
  • 51
    • 85056986655 scopus 로고    scopus 로고
    • Worldwide big data technology and services market
    • Framingham, M., (2015). Worldwide big data technology and services market. http://www.idc.com/getdoc.jsp?containerId=prUS40560115
    • (2015)
    • Framingham, M.1
  • 54
    • 85057068282 scopus 로고    scopus 로고
    • The big data value chain
    • Gallagher, F., (2013). The big data value chain. http://fraysen.blogspot.sg/2012/06/big-data-value-chain.html
    • (2013)
    • Gallagher, F.1
  • 55
    • 85057065041 scopus 로고    scopus 로고
    • The digital universe decade-are you ready. IDC iView
    • Gantz, J., & Reinsel, D., (2010). The digital universe decade-are you ready. IDC iView
    • (2010)
    • Gantz, J.1    Reinsel, D.2
  • 56
    • 84878195422 scopus 로고    scopus 로고
    • The digital universe in 2020: Big data, bigger digital shadows, and biggest growth in the far east
    • Gantz, J., & Reinsel, D., (2012). The digital universe in 2020: Big data, bigger digital shadows, and biggest growth in the far east. IDC iView: IDC Analyze the Future, 2007, 1–16
    • (2012) IDC iView: IDC Analyze the Future , vol.2007 , pp. 1-16
    • Gantz, J.1    Reinsel, D.2
  • 59
    • 85057035717 scopus 로고    scopus 로고
    • Fast distributed file system
    • Google (2013). Fast distributed file system. https://code.google.com/p/fastdfs
    • (2013)
  • 60
    • 85057002528 scopus 로고    scopus 로고
    • Brief history of text analytics
    • Grimes, S., (2007). Brief history of text analytics. http://www.b-eye-network.com/view/6311
    • (2007)
    • Grimes, S.1
  • 65
    • 85057054260 scopus 로고    scopus 로고
    • Cisco: The internet is, like, really big, and getting bigger
    • Hesseldahl, A., (2013). Cisco: The internet is, like, really big, and getting bigger. http://allthingsd.com/20110601/cisco-the-internet-is-like-really-big-and-getting-bigger
    • (2013)
    • Hesseldahl, A.1
  • 66
    • 84906748579 scopus 로고    scopus 로고
    • A strategy to create agricultural big data
    • San Jose, CA: IEEE
    • Hirafuji, M., (2014). A strategy to create agricultural big data. In 2014 Annual SRII Global Conference (SRII) (pp. 249–250). San Jose, CA: IEEE
    • (2014) 2014 Annual SRII Global Conference (SRII) , pp. 249-250
    • Hirafuji, M.1
  • 67
    • 77958498890 scopus 로고    scopus 로고
    • An index to quantify an individuals scientific research output that takes into account the effect of multiple coauthorship
    • Hirsch, J. E., (2010). An index to quantify an individuals scientific research output that takes into account the effect of multiple coauthorship. Scientometrics, 85, 741–754. doi: 10.1007/s11192-010-0193-9
    • (2010) Scientometrics , vol.85 , pp. 741-754
    • Hirsch, J.E.1
  • 68
    • 85057032705 scopus 로고    scopus 로고
    • Hortonworks data platform
    • Hortonworks, I., (2014). Hortonworks data platform. http://hortonworks.com/wp-content/uploads/2012/08/hdp-install-configure-hmc-guide-1.0.1.14.pdf
    • (2014)
    • Hortonworks, I.1
  • 70
    • 84944060491 scopus 로고    scopus 로고
    • Toward a sdn-enabled big data platform for social tv analytics
    • Hu, H., Wen, Y., Gao, Y., Chua, T.-S., & Li, X., (2015). Toward a sdn-enabled big data platform for social tv analytics. IEEE Network, 29(5), 43–49. doi: 10.1109/MNET.2015.7293304
    • (2015) IEEE Network , vol.29 , Issue.5 , pp. 43-49
    • Hu, H.1    Wen, Y.2    Gao, Y.3    Chua, T.-S.4    Li, X.5
  • 72
    • 85057040261 scopus 로고    scopus 로고
    • What is big data?
    • IBM (2013). What is big data? http://www-01.ibm.com/software/data/bigdata
    • (2013)
  • 73
    • 85057064987 scopus 로고    scopus 로고
    • Analytics: Real-world use of big data telecommunications
    • IGS, I., (2013). Analytics: Real-world use of big data in telecommunications. http://www-935.ibm.com/services/multimedia/Anaytics.pdf
    • (2013)
    • Igs, I.1
  • 74
    • 85057016414 scopus 로고    scopus 로고
    • Big data healthcare: Intensive care units as a case study
    • Ioannis, Constantinou, Andreas Papadopoulos, M. D. D. N. S., & Kyprianou, T., (2014). Big data in healthcare: Intensive care units as a case study. http://ercim-news.ercim.eu/en97/ri/big-data-in-healthcare-intensive-care-units-as-a-case-study
    • (2014)
    • Constantinou, I.1    Andreas Papadopoulos, M.D.D.N.S.2    Kyprianou, T.3
  • 76
    • 84905027319 scopus 로고    scopus 로고
    • Spatial big data and wireless networks: experiences, applications, and research challenges
    • Jardak, C., Mahonen, P., & Riihijarvi, J., (2014). Spatial big data and wireless networks: experiences, applications, and research challenges. IEEE Network, 28(4), 26–31. doi: 10.1109/MNET.2014.6863128
    • (2014) IEEE Network , vol.28 , Issue.4 , pp. 26-31
    • Jardak, C.1    Mahonen, P.2    Riihijarvi, J.3
  • 78
    • 84890087985 scopus 로고    scopus 로고
    • Big data and transformational government
    • Joseph, R. C., Johnson, N., et al. (2013). Big data and transformational government. IT Professional, 15, 43–48. doi: 10.1109/MITP.2013.61
    • (2013) IT Professional , vol.15 , pp. 43-48
    • Joseph, R.C.1    Johnson, N.2
  • 79
  • 80
    • 84939612803 scopus 로고    scopus 로고
    • A framework-based approach to utility big data analytics
    • Jun, Zhu, Eric Zhuang, J. F. J. B. A. F., & Shen, J., (2016). A framework-based approach to utility big data analytics. IEEE Transactions on Power Systems, 31, 2455–2462. doi: 10.1109/TPWRS.2015.2462775
    • (2016) IEEE Transactions on Power Systems , vol.31 , pp. 2455-2462
    • Zhu, J.1    Eric Zhuang, J.F.J.B.A.F.2    Shen, J.3
  • 82
    • 84961751321 scopus 로고    scopus 로고
    • Mongodb-based repository design for iot-generated rfid/sensor big data
    • Kang, Y.-S., Park, I.-H., Rhee, J., & Lee, Y.-H., (2016). Mongodb-based repository design for iot-generated rfid/sensor big data. IEEE Sensors Journal, 16, 485–497. doi: 10.1109/JSEN.2015.2483499
    • (2016) IEEE Sensors Journal , vol.16 , pp. 485-497
    • Kang, Y.-S.1    Park, I.-H.2    Rhee, J.3    Lee, Y.-H.4
  • 85
    • 79954581808 scopus 로고    scopus 로고
    • Energy-efficient and bandwidth-reconfigurable photonic networks for high-performance computing (HPC) systems
    • Kodi, A. K., & Louri, A., (2011). Energy-efficient and bandwidth-reconfigurable photonic networks for high-performance computing (HPC) systems. IEEE Journal of Selected Topics in Quantum Electronics, 17, 384–395. doi: 10.1109/JSTQE.2010.2051419
    • (2011) IEEE Journal of Selected Topics in Quantum Electronics , vol.17 , pp. 384-395
    • Kodi, A.K.1    Louri, A.2
  • 86
    • 85057003122 scopus 로고    scopus 로고
    • Kognitio analytical platform
    • Kognitio (2015). Kognitio analytical platform. http://www.enterprisemanagement360.com/wp-content/files_mf/1448300214KognitioAnalyticalPlatformTechnicalProfile.pdf
    • (2015)
  • 91
    • 84873131659 scopus 로고    scopus 로고
    • Challenges and opportunities with big data
    • Labrinidis, A., & Jagadish, H., (2012). Challenges and opportunities with big data. Proceedings of the VLDB Endowment, 5, 2032–2033. doi: 10.14778/2367502.2367572
    • (2012) Proceedings of the VLDB Endowment , vol.5 , pp. 2032-2033
    • Labrinidis, A.1    Jagadish, H.2
  • 95
    • 85019268075 scopus 로고    scopus 로고
    • Boafft: Distributed deduplication for big data storage in the cloud
    • Luo, S., Zhang, G., Wu, C., Khan, S., & Li, K., (2016). Boafft: Distributed deduplication for big data storage in the cloud. IEEE Transactions on Cloud Computing, 61(11), 1–13. doi: 10.1109/TC.2016.2574353
    • (2016) IEEE Transactions on Cloud Computing , vol.61 , Issue.11 , pp. 1-13
    • Luo, S.1    Zhang, G.2    Wu, C.3    Khan, S.4    Li, K.5
  • 96
    • 0024770373 scopus 로고
    • Defense applications of neural networks
    • Lupo, J. C., (1989). Defense applications of neural networks. IEEE Communications Magazine, 27(11), 82–88. doi: 10.1109/35.41404
    • (1989) IEEE Communications Magazine , vol.27 , Issue.11 , pp. 82-88
    • Lupo, J.C.1
  • 97
    • 84979807652 scopus 로고    scopus 로고
    • Managing big city information based on webvrgis
    • Lv, Z., Li, X., Zhang, B., Wang, W., Hu, J., & Feng, S., (2016). Managing big city information based on webvrgis. IEEE Access, 4, 407–415. doi: 10.1109/ACCESS.2016.2517076
    • (2016) IEEE Access , vol.4 , pp. 407-415
    • Lv, Z.1    Li, X.2    Zhang, B.3    Wang, W.4    Hu, J.5    Feng, S.6
  • 99
    • 84979858157 scopus 로고    scopus 로고
    • A novel business analytics approach and case study–fuzzy associative classifier based on information gain and rule-covering
    • Ma, Y., Chen, G., & Wei, Q., (2014). A novel business analytics approach and case study–fuzzy associative classifier based on information gain and rule-covering. Journal of Management Analytics, 1(1), 1–19. doi: 10.1080/23270012.2014.889915
    • (2014) Journal of Management Analytics , vol.1 , Issue.1 , pp. 1-19
    • Ma, Y.1    Chen, G.2    Wei, Q.3
  • 101
    • 85056994252 scopus 로고    scopus 로고
    • Mapr reference guide
    • MapR (2016). Mapr reference guide. http://doc.mapr.com/display/MapR/Reference+Guide
    • (2016)
  • 102
    • 85057004751 scopus 로고
    • Global positioning system. US Patent 5,210,540
    • Masumoto, Y., (1993). Global positioning system. US Patent 5,210,540
    • (1993)
    • Masumoto, Y.1
  • 104
    • 85057054933 scopus 로고    scopus 로고
    • The NIST Definition of Cloud Computing. Washington DC: National Institute of Standards and Technology-Special Publication 800-145
    • Mell, P., & Grance, T., (2011). The NIST Definition of Cloud Computing. Washington DC: National Institute of Standards and Technology-Special Publication 800-145. http://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-145.pdf
    • (2011)
    • Mell, P.1    Grance, T.2
  • 107
    • 84969167232 scopus 로고    scopus 로고
    • Big data and analytics for government innovation
    • Cham: Springer
    • Morabito, V., (2015). Big data and analytics for government innovation. In Big Data and Analytics (pp. 23–45). Cham: Springer
    • (2015) Big Data and Analytics , pp. 23-45
    • Morabito, V.1
  • 111
    • 85057020315 scopus 로고    scopus 로고
    • Big data and transport
    • OECD (2013). Big data and transport. www.openskydata.com/assets/media/downloads/BigDataOct2013.pdf
    • (2013)
  • 113
    • 85057035814 scopus 로고    scopus 로고
    • Big data financial services and banking
    • Oracle (2015). Big data in financial services and banking. http://www.oracle.com/us/technologies/big-data/big-data-in-financial-services-wp-2415760.pdf
    • (2015)
  • 114
    • 84901242759 scopus 로고    scopus 로고
    • A survey on techniques for improving the energy efficiency of large-scale distributed systems
    • Orgerie, A. C., Assuncao, M. D. d., & Lefevre, L., (2014). A survey on techniques for improving the energy efficiency of large-scale distributed systems. ACM Computing Surveys (CSUR), 46(4), 47. doi: 10.1145/2532637
    • (2014) ACM Computing Surveys (CSUR) , vol.47
    • Orgerie, A.C.1    Assuncao, M.D.D.2    Lefevre, L.3
  • 115
    • 84946822182 scopus 로고    scopus 로고
    • Reference architecture and classification of technologies, products and services for big data systems
    • Pääkkönen, P., & Pakkala, D., (2015). Reference architecture and classification of technologies, products and services for big data systems. Big Data Research, 2, 166–186. doi: 10.1016/j.bdr.2015.01.001
    • (2015) Big Data Research , vol.2 , pp. 166-186
    • Pääkkönen, P.1    Pakkala, D.2
  • 116
    • 56649123245 scopus 로고    scopus 로고
    • Individual and group behavior-based customer profile model for personalized product recommendation
    • Park, Y.-J., & Chang, K.-N., (2009). Individual and group behavior-based customer profile model for personalized product recommendation. Expert Systems with Applications, 36, 1932–1939. doi: 10.1016/j.eswa.2007.12.034
    • (2009) Expert Systems with Applications , vol.36 , pp. 1932-1939
    • Park, Y.-J.1    Chang, K.-N.2
  • 119
    • 85057041315 scopus 로고    scopus 로고
    • Big data platforms, tools, and research at IBM
    • Pednault, E., (2011). Big data platforms, tools, and research at IBM. http://www.nist.gov/itl/ssd/is/upload/NIST-BD-Platforms-01-Pednault-BigData-NIST.pdf
    • (2011)
    • Pednault, E.1
  • 121
    • 85009514110 scopus 로고    scopus 로고
    • Big data architecture
    • New Delhi: Springer
    • Ramesh, B., (2015). Big data architecture. In Big Data (pp. 29–59). New Delhi: Springer
    • (2015) Big Data , pp. 29-59
    • Ramesh, B.1
  • 123
    • 84962018357 scopus 로고    scopus 로고
    • Supporting multi data stores applications in cloud environments
    • Sellami, R., Bhiri, S., & Defude, B., (2016). Supporting multi data stores applications in cloud environments. IEEE Transactions on Services Computing, 9(1), 59–71
    • (2016) IEEE Transactions on Services Computing , vol.9 , Issue.1 , pp. 59-71
    • Sellami, R.1    Bhiri, S.2    Defude, B.3
  • 124
    • 85057060057 scopus 로고    scopus 로고
    • Big data vendors and technologies
    • Sevilla, M., (2012). Big data vendors and technologies. http://www.capgemini.com/blog/capping-it-off/2012/09/big-data-vendors-and-technologies-the-list
    • (2012)
    • Sevilla, M.1
  • 126
    • 85057043339 scopus 로고    scopus 로고
    • Big data: The future of precision agriculture
    • Shearer, S. A., (2014). Big data: The future of precision agriculture. http://infoag.org/abstract_papers/papers/paper_233.pdf
    • (2014)
    • Shearer, S.A.1
  • 130
    • 85057034615 scopus 로고    scopus 로고
    • Data-driven healthcare organizations use big data analytics for big gains
    • Software, I., (2013). Data-driven healthcare organizations use big data analytics for big gains. http://www-03.ibm.com/industries/ca/en/healthcare/documents/Data_driven_healthcare_organizations_use_big_data_analytics_for_big_gains.pdf
    • (2013)
    • Software, I.1
  • 131
    • 85057022506 scopus 로고    scopus 로고
    • Big data brings big opportunities for insurers
    • Stephen Mills, S. F., (2012). Big data brings big opportunities for insurers. http://www-935.ibm.com/services/uk/en/attachments/pdf/IBM_BAO_Big_Data_Insurance_WEB.pdf
    • (2012)
    • Stephen Mills, S.F.1
  • 132
    • 84913535250 scopus 로고    scopus 로고
    • iCARE: A framework for big data-based banking customer analytics
    • Sun, N., Morris, J., Xu, J., Zhu, X., & Xie, M., (2014). iCARE: A framework for big data-based banking customer analytics. IBM Journal of Research and Development, 58(5/6), 4:1–4:9
    • (2014) IBM Journal of Research and Development , vol.58 , Issue.5-6 , pp. 4:1-4:9
    • Sun, N.1    Morris, J.2    Xu, J.3    Zhu, X.4    Xie, M.5
  • 133
    • 84877885971 scopus 로고    scopus 로고
    • Clouds for scalable big data analytics. Computer, 46(5), 98–101
    • Talia, D., (2013). Clouds for scalable big data analytics. Computer, 46(5), 98–101. doi:10.1109/MC.2013.162
    • (2013)
    • Talia, D.1
  • 134
    • 85028218799 scopus 로고    scopus 로고
    • Wireless underground sensor networks: Mibased communication systems for underground applications
    • Tan, X., Sun, Z., & Akyildiz, I. F., (2015). Wireless underground sensor networks: Mibased communication systems for underground applications. IEEE Antennas and Propagation Magazine, 57(4), 74–87. doi: 10.1109/MAP.2015.2453917
    • (2015) IEEE Antennas and Propagation Magazine , vol.57 , Issue.4 , pp. 74-87
    • Tan, X.1    Sun, Z.2    Akyildiz, I.F.3
  • 135
    • 85057053298 scopus 로고    scopus 로고
    • Taobao file system
    • Taobao (2013). Taobao file system. http://code.taobao.org/p/tfs/src
    • (2013)
  • 137
    • 84933049054 scopus 로고    scopus 로고
    • Chive: Bandwidth optimized continuous querying in distributed clouds
    • Theeten, B., & Janssens, N., (2015). Chive: Bandwidth optimized continuous querying in distributed clouds. IEEE Transactions on Cloud Computing, 3, 219–232. doi: 10.1109/TCC.2015.2424868
    • (2015) IEEE Transactions on Cloud Computing , vol.3 , pp. 219-232
    • Theeten, B.1    Janssens, N.2
  • 139
    • 85057042829 scopus 로고    scopus 로고
    • Return of investment (ROI) guide to big data analytics solutions
    • Tribler, C., (2016). Return of investment (ROI) guide to big data analytics solutions. https://www.linkedin.com/pulse/return-investment-roi-guide-big-data-analytics-casper-tribler
    • (2016)
    • Tribler, C.1
  • 143
    • 85057030845 scopus 로고    scopus 로고
    • John Deere is revolutionizing farming with big data
    • Van Rijmenam, M., (2015). John Deere is revolutionizing farming with big data. https://datafloq.com/read/john-deere-revolutionizing-farming-big-data/511
    • (2015)
    • Van Rijmenam, M.1
  • 147
    • 84866500825 scopus 로고    scopus 로고
    • Assistive tagging: A survey of multimedia tagging with human-computer joint exploration
    • Wang, M., Ni, B., Hua, X.-S., & Chua, T.-S., (2012). Assistive tagging: A survey of multimedia tagging with human-computer joint exploration. ACM Computing Surveys (CSUR), 44(4), 25. doi: 10.1145/2333112.2333120
    • (2012) ACM Computing Surveys (CSUR) , vol.44 , Issue.4 , pp. 25
    • Wang, M.1    Ni, B.2    Hua, X.-S.3    Chua, T.-S.4
  • 149
    • 85057007040 scopus 로고    scopus 로고
    • A comprehensive list of big data statistics
    • Wikibon (2012). A comprehensive list of big data statistics. http://wikibon.org/blog/big-data-statistics
    • (2012)
  • 151
    • 84962408645 scopus 로고    scopus 로고
    • Diplocloud: Efficient and scalable management of rdf data in the cloud
    • Wylot, M., & Mauroux, P. C., (2016). Diplocloud: Efficient and scalable management of rdf data in the cloud. IEEE Transactions on Knowledge and Data Engineering, 28, 659–674. doi: 10.1109/TKDE.2015.2499202
    • (2016) IEEE Transactions on Knowledge and Data Engineering , vol.28 , pp. 659-674
    • Wylot, M.1    Mauroux, P.C.2
  • 153
    • 84923224850 scopus 로고    scopus 로고
    • Banian: A cross-platform interactive query system for structured big data
    • Xu, T., Wang, D., & Liu, G., (2015). Banian: A cross-platform interactive query system for structured big data. Tsinghua Science and Technology, 20(1), 62–71. doi: 10.1109/TST.2015.7040514
    • (2015) Tsinghua Science and Technology , vol.20 , Issue.1 , pp. 62-71
    • Xu, T.1    Wang, D.2    Liu, G.3
  • 155
    • 84994701188 scopus 로고    scopus 로고
    • Space shuffle: A scalable, flexible, and high-performance data center network
    • IEEE, &
    • Yu, Y., & Qian, C., (2016). Space shuffle: A scalable, flexible, and high-performance data center network. IEEE Transactions on Parallel and Distributed Systems (pp. 1–14) IEEE
    • (2016) IEEE Transactions on Parallel and Distributed Systems , pp. 1-14
    • Yu, Y.1    Qian, C.2
  • 156
    • 84933045511 scopus 로고    scopus 로고
    • Fastraq: A fast approach to range aggregate queries in big data environments
    • Yun, X., Wu, G., Zhang, G., Li, K., & Wang, S., (2015). Fastraq: A fast approach to range aggregate queries in big data environments. IEEE Transactions on Cloud Computing, 3, 206–218. doi: 10.1109/TCC.2014.2338325
    • (2015) IEEE Transactions on Cloud Computing , vol.3 , pp. 206-218
    • Yun, X.1    Wu, G.2    Zhang, G.3    Li, K.4    Wang, S.5
  • 157
    • 84905054847 scopus 로고    scopus 로고
    • CAP: community activity prediction based on big data analysis
    • Zhang, Y., Chen, M., Mao, S., Hu, L., & Leung, V. C., (2014). CAP: community activity prediction based on big data analysis. IEEE Network, 28(4), 52–57. doi: 10.1109/MNET.2014.6863132
    • (2014) IEEE Network , vol.28 , Issue.4 , pp. 52-57
    • Zhang, Y.1    Chen, M.2    Mao, S.3    Hu, L.4    Leung, V.C.5
  • 158
    • 71749085685 scopus 로고    scopus 로고
    • IBM cloud computing powering a smarter planet
    • Berlin, Heidelberg: Springer, &
    • Zhu, J., Fang, X., Guo, Z., Niu, M. H., Cao, F., Yue, S., & Liu, Q. Y., (2009). IBM cloud computing powering a smarter planet. In Cloud Computing (pp. 621–625). Berlin, Heidelberg: Springer
    • (2009) Cloud Computing , pp. 621-625
    • Zhu, J.1    Fang, X.2    Guo, Z.3    Niu, M.H.4    Cao, F.5    Yue, S.6    Liu, Q.Y.7
  • 159
    • 84939140724 scopus 로고    scopus 로고
    • Multimedia big data computing
    • Zhu, W., Cui, P., Wang, Z., & Hua, G., (2015). Multimedia big data computing. IEEE MultiMedia, 22, 96–c3. doi: 10.1109/MMUL.2015.66
    • (2015) IEEE MultiMedia , vol.22 , pp. 3-96
    • Zhu, W.1    Cui, P.2    Wang, Z.3    Hua, G.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.