-
1
-
-
85050668724
-
Top Trends in the Gartner hype cycle for emerging technologies, 2017
-
[accessed 12.02.18]
-
Panetta, K., Top Trends in the Gartner hype cycle for emerging technologies, 2017. Gartner, 2017, 1–5 http://www.gartner.com/smarterwithgartner/top-trends-in-the-gartner-hype-cycle-for-emerging-technologies-2017/ [accessed 12.02.18].
-
(2017)
Gartner
, pp. 1-5
-
-
Panetta, K.1
-
2
-
-
85050004953
-
Gartner hype cycle
-
[accessed 11.02.18]
-
Gartner Inc. Gartner hype cycle. Gartner Inc., 2017 http://www.gartner.com/technology/research/methodologies/hype-cycle.jsp [accessed 11.02.18].
-
(2017)
Gartner Inc.
-
-
-
3
-
-
84946229359
-
Elon Musk: artificial intelligence is our biggest existential threat
-
The Guardian 2014 [accessed 11.02.18]
-
Gibbs, S., Elon Musk: artificial intelligence is our biggest existential threat. The Guardian 2014, 2014 http://www.theguardian.com/technology/2014/oct/27/elon-musk-artificial-intelligence-ai-biggest-existential-threat [accessed 11.02.18].
-
(2014)
-
-
Gibbs, S.1
-
4
-
-
84946785829
-
Stephen Hawking warns artificial intelligence could end mankind
-
BBC News [accessed 11.02.18]
-
Cellan-Jones, R., Stephen Hawking warns artificial intelligence could end mankind. 2014, BBC News, 1–5 http://www.bbc.com/news/technology-30290540 [accessed 11.02.18].
-
(2014)
, pp. 1-5
-
-
Cellan-Jones, R.1
-
5
-
-
85027305052
-
Accenture Institute for High Performance: Why AI is the Future of Growth
-
[accessed 11.02.18]
-
Purdy, M., Daugherty, P., Accenture Institute for High Performance: Why AI is the Future of Growth. 2016, 1–72 https://www.accenture.com/_acnmedia/PDF-19/AI_in_Management_Report.pdf#zoom=50 [accessed 11.02.18].
-
(2016)
, pp. 1-72
-
-
Purdy, M.1
Daugherty, P.2
-
6
-
-
85049970352
-
-
Computational Intelligence and Knowledge. Computational Intelligence: A Logical Approach
-
Poole DL, Mackworth A, Goebel RG. Computational Intelligence and Knowledge. Computational Intelligence: A Logical Approach 1998:1–22.
-
(1998)
, pp. 1-22
-
-
Poole, D.L.1
Mackworth, A.2
Goebel, R.G.3
-
7
-
-
85029695623
-
McKinsey Global Institute: Artificial Intelligence The Next Digital Frontier?
-
[accessed 11.02.18]
-
Bughin, J., Hazan, E., Ramaswamy, S., Chui, M., Allas, T., Dahlström, P., et al. McKinsey Global Institute: Artificial Intelligence The Next Digital Frontier?. 2017, 80 https://www.mckinsey.com/∼/media/McKinsey/Industries/AdvancedElectronics/OurInsights/Howartificialintelligencecandeliverrealvaluetocompanies/MGI-Artificial-Intelligence-Discussion-paper.ashx [accessed 11.02.18].
-
(2017)
, pp. 80
-
-
Bughin, J.1
Hazan, E.2
Ramaswamy, S.3
Chui, M.4
Allas, T.5
Dahlström, P.6
-
8
-
-
85049979702
-
U Colorado OR Optimization 2017
-
[accessed 11.02.18]
-
LeenTaas. U Colorado OR Optimization 2017. https://leantaas.com/uploads/booklets/iQueue_for_Operating_Rooms_UCHealth_Results_Handbook.pdf [accessed 11.02.18].
-
-
-
-
9
-
-
85049998572
-
Infusion Center Optimization 2017
-
[accessed 11.02.18]
-
LeenTaas. Infusion Center Optimization 2017. https://leantaas.com/infusion_centers/case_studies_booklet [accessed 11.02.18].
-
-
-
-
10
-
-
85049946646
-
Moore's Law: Transistors per microprocessor
-
Ourworldindata.org [accessed 11.02.18]
-
Rupp, K., Moore's Law: Transistors per microprocessor. Ourworldindata.org https://ourworldindata.org/grapher/transistors-per-microprocessor, 2017 [accessed 11.02.18].
-
(2017)
-
-
Rupp, K.1
-
11
-
-
46649111901
-
The law of accelerating returns
-
Buchanan, M., The law of accelerating returns. Nat Phys, 4, 2008, 507, 10.1038/nphys1010.
-
(2008)
Nat Phys
, vol.4
, pp. 507
-
-
Buchanan, M.1
-
12
-
-
85049992730
-
Watson Analytics Use Case: The Iris Data Set 2015
-
[accessed 11.02.18]
-
True, J., Watson Analytics Use Case: The Iris Data Set 2015. https://www.ibm.com/communities/analytics/watson-analytics-blog/watson-analytics-use-case-the-iris-data-set/ [accessed 11.02.18].
-
-
-
True, J.1
-
13
-
-
85049966241
-
5 Ways Cognitive Technology Can Help Revolutionize Healthcare - Watson Health Perspectives
-
Watson Health [accessed 11.02.18]
-
Watson Health. 5 Ways Cognitive Technology Can Help Revolutionize Healthcare - Watson Health Perspectives. Watson Health https://www.ibm.com/blogs/watson-health/5-ways-cognitive-technology-can-help-revolutionize-healthcare/, 2016 [accessed 11.02.18].
-
(2016)
-
-
-
14
-
-
85036497908
-
Early experience with IBM Watson for Oncology (WFO) cognitive computing system for lung and colorectal cancer treatment
-
Somashekhar, S.P., Sepúlveda, M.J., Norden, A.D., Rauthan, A., Arun, K., Patil, P., et al. Early experience with IBM Watson for Oncology (WFO) cognitive computing system for lung and colorectal cancer treatment. J Clin Oncol, 35, 2017, 8527, 10.1200/JCO.2017.35.15_suppl.8527.
-
(2017)
J Clin Oncol
, vol.35
, pp. 8527
-
-
Somashekhar, S.P.1
Sepúlveda, M.J.2
Norden, A.D.3
Rauthan, A.4
Arun, K.5
Patil, P.6
-
15
-
-
85028080442
-
Cognitive computing and the future of health care cognitive computing and the future of healthcare: the cognitive power of IBM Watson has the potential to Transform Global Personalized medicine
-
Ahmed, M.N., Toor, A.S., O'Neil, K., Friedland, D., Cognitive computing and the future of health care cognitive computing and the future of healthcare: the cognitive power of IBM Watson has the potential to Transform Global Personalized medicine. IEEE Pulse 8 (2017), 4–9, 10.1109/MPUL.2017.2678098.
-
(2017)
IEEE Pulse
, vol.8
, pp. 4-9
-
-
Ahmed, M.N.1
Toor, A.S.2
O'Neil, K.3
Friedland, D.4
-
16
-
-
85049982853
-
{IBM}'s Watson proves useful at fighting cancer—except in Texas
-
Ars Technica [accessed 11.02.18]
-
Mole, B., {IBM}'s Watson proves useful at fighting cancer—except in Texas. 2017, Ars Technica https://arstechnica.com/science/2017/02/ibms-watson-proves-useful-at-fighting-cancer-except-in-texas/ [accessed 11.02.18].
-
(2017)
-
-
Mole, B.1
-
17
-
-
0024070146
-
Artificial neural networks
-
Hopfield, J.J., Artificial neural networks. IEEE Circuits Devices Mag 4 (1988), 3–10, 10.1109/101.8118.
-
(1988)
IEEE Circuits Devices Mag
, vol.4
, pp. 3-10
-
-
Hopfield, J.J.1
-
18
-
-
84910651844
-
Deep learning in neural networks: an overview
-
Schmidhuber, J., Deep learning in neural networks: an overview. Neural Networks 61 (2015), 85–117, 10.1016/j.neunet.2014.09.003.
-
(2015)
Neural Networks
, vol.61
, pp. 85-117
-
-
Schmidhuber, J.1
-
19
-
-
84904867557
-
Playing Atari with Deep Reinforcement Learning Volodymyr
-
arXiv Preprint arXiv
-
Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, I., Wierstra, D., et al. Playing Atari with Deep Reinforcement Learning Volodymyr. 2013, arXiv Preprint arXiv, 1–9, 10.1038/nature14236.
-
(2013)
, pp. 1-9
-
-
Mnih, V.1
Kavukcuoglu, K.2
Silver, D.3
Graves, A.4
Antonoglou, I.5
Wierstra, D.6
-
20
-
-
84963949906
-
Mastering the game of Go with deep neural networks and tree search
-
Silver, D., Huang, A., Maddison, C.J., Guez, A., Sifre, L., Van Den Driessche, G., et al. Mastering the game of Go with deep neural networks and tree search. Nature 529 (2016), 484–489, 10.1038/nature16961.
-
(2016)
Nature
, vol.529
, pp. 484-489
-
-
Silver, D.1
Huang, A.2
Maddison, C.J.3
Guez, A.4
Sifre, L.5
Van Den Driessche, G.6
-
21
-
-
84979019529
-
Deep learning applications for predicting pharmacological properties of drugs and drug repurposing using transcriptomic data
-
Aliper, A., Plis, S., Artemov, A., Ulloa, A., Mamoshina, P., Zhavoronkov, A., Deep learning applications for predicting pharmacological properties of drugs and drug repurposing using transcriptomic data. Mol Pharmaceutics 13 (2016), 2524–2530, 10.1021/acs.molpharmaceut.6b00248.
-
(2016)
Mol Pharmaceutics
, vol.13
, pp. 2524-2530
-
-
Aliper, A.1
Plis, S.2
Artemov, A.3
Ulloa, A.4
Mamoshina, P.5
Zhavoronkov, A.6
-
22
-
-
85049981172
-
-
Using deep learning to enhance cancer diagnosis and classification. Proceeding of the 30th International Conference on machine learning Atlanta, Georgia, USA 2013;28.
-
Fakoor R, Ladhak F, Nazi A, Huber M. Using deep learning to enhance cancer diagnosis and classification. Proceeding of the 30th International Conference on machine learning Atlanta, Georgia, USA 2013;28.
-
-
-
Fakoor, R.1
Ladhak, F.2
Nazi, A.3
Huber, M.4
-
23
-
-
85014442834
-
Deep Learning for Identifying Metastatic Breast Cancer
-
arXiv Preprint
-
Wang, D., Khosla, A., Gargeya, R., Irshad, H., Beck, A.H., Deep Learning for Identifying Metastatic Breast Cancer. 2016, arXiv Preprint, 1–6 http://arxiv.org/abs/1606.05718.
-
(2016)
, pp. 1-6
-
-
Wang, D.1
Khosla, A.2
Gargeya, R.3
Irshad, H.4
Beck, A.H.5
-
24
-
-
85017623447
-
Accurate and reproducible invasive breast cancer detection in whole-slide images: a Deep Learning approach for quantifying tumor extent
-
Cruz-Roa, A., Gilmore, H., Basavanhally, A., Feldman, M., Ganesan, S., Shih, N.N.C., et al. Accurate and reproducible invasive breast cancer detection in whole-slide images: a Deep Learning approach for quantifying tumor extent. Scientific Rep, 7, 2017, 46450, 10.1038/srep46450.
-
(2017)
Scientific Rep
, vol.7
, pp. 46450
-
-
Cruz-Roa, A.1
Gilmore, H.2
Basavanhally, A.3
Feldman, M.4
Ganesan, S.5
Shih, N.N.C.6
|