메뉴 건너뛰기




Volumn 86, Issue , 2018, Pages 59-70

Online entropy-based discretization for data streaming classification

Author keywords

Concept drift; Data preprocessing; Data reduction; Data stream; Discretization; Online learning

Indexed keywords

DATA REDUCTION;

EID: 85044115449     PISSN: 0167739X     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.future.2018.03.008     Document Type: Article
Times cited : (17)

References (34)
  • 1
    • 84937399810 scopus 로고    scopus 로고
    • Data Preprocessing in Data Mining
    • Springer
    • García, S., Luengo, J., Herrera, F., Data Preprocessing in Data Mining. 2015, Springer.
    • (2015)
    • García, S.1    Luengo, J.2    Herrera, F.3
  • 2
    • 84956853985 scopus 로고    scopus 로고
    • Tutorial on practical tips of the most influential data preprocessing algorithms in data mining
    • García, S., Luengo, J., Herrera, F., Tutorial on practical tips of the most influential data preprocessing algorithms in data mining. Knowl.-Based Syst. 98 (2016), 1–29.
    • (2016) Knowl.-Based Syst. , vol.98 , pp. 1-29
    • García, S.1    Luengo, J.2    Herrera, F.3
  • 5
    • 84909953977 scopus 로고    scopus 로고
    • A rough set-based method for updating decision rules on attribute values; coarsening and refining
    • Chen, H., Li, T., Luo, C., Horng, S.J., Wang, G., A rough set-based method for updating decision rules on attribute values; coarsening and refining. IEEE Trans. Knowl. Data Eng. 26:12 (2014), 2886–2899.
    • (2014) IEEE Trans. Knowl. Data Eng. , vol.26 , Issue.12 , pp. 2886-2899
    • Chen, H.1    Li, T.2    Luo, C.3    Horng, S.J.4    Wang, G.5
  • 6
    • 58149195307 scopus 로고    scopus 로고
    • Discretization for Naive-Bayes learning: Managing discretization bias and variance
    • Yang, Y., Webb, G.I., Discretization for Naive-Bayes learning: Managing discretization bias and variance. Mach. Learn. 74:1 (2009), 39–74.
    • (2009) Mach. Learn. , vol.74 , Issue.1 , pp. 39-74
    • Yang, Y.1    Webb, G.I.2
  • 7
    • 84988306242 scopus 로고    scopus 로고
    • Non-naive bayesian classifiers for classification problems with continuous attributes
    • Wang, X., He, Y., Wang, D.D., Non-naive bayesian classifiers for classification problems with continuous attributes. IEEE Trans. Cybern. 44:1 (2014), 21–39.
    • (2014) IEEE Trans. Cybern. , vol.44 , Issue.1 , pp. 21-39
    • Wang, X.1    He, Y.2    Wang, D.D.3
  • 9
    • 84961777774 scopus 로고    scopus 로고
    • Online passive-aggressive active learning
    • Lu, J., Zhao, P., Hoi, S.C.H., Online passive-aggressive active learning. Mach. Learn. 103:2 (2016), 141–183.
    • (2016) Mach. Learn. , vol.103 , Issue.2 , pp. 141-183
    • Lu, J.1    Zhao, P.2    Hoi, S.C.H.3
  • 10
    • 85020715458 scopus 로고    scopus 로고
    • Knowledge Discovery from Data Streams
    • Chapman & Hall/CRC
    • Gama, J., Knowledge Discovery from Data Streams. 2010, Chapman & Hall/CRC.
    • (2010)
    • Gama, J.1
  • 11
    • 84949644020 scopus 로고    scopus 로고
    • From business intelligence to semantic data stream management
    • Modeling and Management for Big Data Analytics and Visualization
    • Aufaure, M.-A., Chiky, R., Curé, O., Khrouf, H., Kepeklian, G., From business intelligence to semantic data stream management. Future Gener. Comput. Syst. 63:Supplement C (2016), 100–107 Modeling and Management for Big Data Analytics and Visualization.
    • (2016) Future Gener. Comput. Syst. , vol.63 , pp. 100-107
    • Aufaure, M.-A.1    Chiky, R.2    Curé, O.3    Khrouf, H.4    Kepeklian, G.5
  • 12
    • 85031496391 scopus 로고    scopus 로고
    • Big data: Tutorial and guidelines on information and process fusion for analytics algorithms with MapReduce
    • Ramírez-Gallego, S., Fernández, A., García, S., Chen, M., Herrera, F., Big data: Tutorial and guidelines on information and process fusion for analytics algorithms with MapReduce. Inform. Fusion 42:Supplement C (2018), 51–61.
    • (2018) Inform. Fusion , vol.42 , pp. 51-61
    • Ramírez-Gallego, S.1    Fernández, A.2    García, S.3    Chen, M.4    Herrera, F.5
  • 13
    • 84910150798 scopus 로고    scopus 로고
    • Detecting concept change in dynamic data streams
    • Pears, R., Sakthithasan, S., Koh, Y.S., Detecting concept change in dynamic data streams. Mach. Learn. 97:3 (2014), 259–293.
    • (2014) Mach. Learn. , vol.97 , Issue.3 , pp. 259-293
    • Pears, R.1    Sakthithasan, S.2    Koh, Y.S.3
  • 15
    • 85013498914 scopus 로고    scopus 로고
    • A survey on data preprocessing for data stream mining: Current status and future directions
    • Ramírez-Gallego, S., Krawczyk, B., García, S., Woniak, M., Herrera, F., A survey on data preprocessing for data stream mining: Current status and future directions. Neurocomputing 239 (2017), 39–57.
    • (2017) Neurocomputing , vol.239 , pp. 39-57
    • Ramírez-Gallego, S.1    Krawczyk, B.2    García, S.3    Woniak, M.4    Herrera, F.5
  • 16
    • 84874613998 scopus 로고    scopus 로고
    • A survey of discretization techniques: Taxonomy and empirical analysis in supervised learning
    • García, S., Luengo, J., Sáez, J.A., López, V., Herrera, F., A survey of discretization techniques: Taxonomy and empirical analysis in supervised learning. IEEE Trans. Knowl. Data Eng. 25:4 (2013), 734–750.
    • (2013) IEEE Trans. Knowl. Data Eng. , vol.25 , Issue.4 , pp. 734-750
    • García, S.1    Luengo, J.2    Sáez, J.A.3    López, V.4    Herrera, F.5
  • 18
    • 0032595775 scopus 로고    scopus 로고
    • General and efficient multisplitting of numerical attributes
    • Elomaa, T., Rousu, J., General and efficient multisplitting of numerical attributes. Mach. Learn. 36 (1999), 201–244.
    • (1999) Mach. Learn. , vol.36 , pp. 201-244
    • Elomaa, T.1    Rousu, J.2
  • 21
    • 85018670513 scopus 로고    scopus 로고
    • Scalable real-time classification of data streams with concept drift
    • Tennant, M., Stahl, F.T., Rana, O., Gomes, J.B., Scalable real-time classification of data streams with concept drift. Future Gener. Comput. Syst. 75 (2017), 187–199.
    • (2017) Future Gener. Comput. Syst. , vol.75 , pp. 187-199
    • Tennant, M.1    Stahl, F.T.2    Rana, O.3    Gomes, J.B.4
  • 24
    • 84947126374 scopus 로고    scopus 로고
    • One-class classifiers with incremental learning and forgetting for data streams with concept drift
    • Krawczyk, B., Woźniak, M., One-class classifiers with incremental learning and forgetting for data streams with concept drift. Soft Comput. 19:12 (2015), 3387–3400.
    • (2015) Soft Comput. , vol.19 , Issue.12 , pp. 3387-3400
    • Krawczyk, B.1    Woźniak, M.2
  • 25
    • 84936948986 scopus 로고    scopus 로고
    • Contrary to popular belief incremental discretization can be sound, computationally efficient and extremely useful for streaming data
    • Webb, G., Contrary to popular belief incremental discretization can be sound, computationally efficient and extremely useful for streaming data. IEEE International Conference on Data Mining, ICDM, 2014, 1031–1036.
    • (2014) IEEE International Conference on Data Mining, ICDM , pp. 1031-1036
    • Webb, G.1
  • 26
    • 84925114954 scopus 로고    scopus 로고
    • Multivariate discretization based on evolutionary cut points selection for classification
    • Ramírez-Gallego, S., García, S., Benítez, J.M., Herrera, F., Multivariate discretization based on evolutionary cut points selection for classification. IEEE Trans. Cybern. 46:3 (2016), 595–608.
    • (2016) IEEE Trans. Cybern. , vol.46 , Issue.3 , pp. 595-608
    • Ramírez-Gallego, S.1    García, S.2    Benítez, J.M.3    Herrera, F.4
  • 27
    • 33751066175 scopus 로고    scopus 로고
    • Discretization from data streams: Applications to histograms and data mining
    • Proceedings of the 2006 ACM Symposium on Applied Computing, SAC ’06
    • J. Gama, C. Pinto, Discretization from data streams: Applications to histograms and data mining, in: Proceedings of the 2006 ACM Symposium on Applied Computing, SAC ’06, 2006, pp. 662–667.
    • (2006) , pp. 662-667
    • Gama, J.1    Pinto, C.2
  • 28
    • 84885643628 scopus 로고    scopus 로고
    • Online ChiMerge Algorithm
    • Holmes D.E. Jain L.C. Springer Berlin Heidelberg Berlin, Heidelberg
    • Lehtinen, P., Saarela, M., Elomaa, T., Online ChiMerge Algorithm. Holmes, D.E., Jain, L.C., (eds.), 2012, Springer Berlin Heidelberg, Berlin, Heidelberg, 199–216.
    • (2012) , pp. 199-216
    • Lehtinen, P.1    Saarela, M.2    Elomaa, T.3
  • 29
    • 44649122775 scopus 로고    scopus 로고
    • Maintaining optimal multi-way splits for numerical attributes in data streams
    • Advances in Knowledge Discovery and Data Mining, 12th Pacific-Asia Conference, PAKDD 2008, Osaka, Japan, May 20–23 Proceedings
    • T. Elomaa, P. Lehtinen, Maintaining optimal multi-way splits for numerical attributes in data streams, in: Advances in Knowledge Discovery and Data Mining, 12th Pacific-Asia Conference, PAKDD 2008, Osaka, Japan, May 20–23, 2008 Proceedings, 2008, pp. 544–553.
    • (2008) , pp. 544-553
    • Elomaa, T.1    Lehtinen, P.2
  • 31
    • 0035789299 scopus 로고    scopus 로고
    • Mining time-changing data streams
    • Proceedings of the Seventh ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD ’01
    • G. Hulten, L. Spencer, P. Domingos, Mining time-changing data streams, in: Proceedings of the Seventh ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD ’01, 2001, pp. 97–106.
    • (2001) , pp. 97-106
    • Hulten, G.1    Spencer, L.2    Domingos, P.3
  • 32
    • 77949418454 scopus 로고    scopus 로고
    • Data Stream Mining: A Practical Approach
    • The University of Waikato
    • Bifet, A., Kirkby, R., Data Stream Mining: A Practical Approach., 2009, The University of Waikato.
    • (2009)
    • Bifet, A.1    Kirkby, R.2
  • 33
    • 77549084648 scopus 로고    scopus 로고
    • Advanced nonparametric tests for multiple comparisons in the design of experiments in computational intelligence and data mining: Experimental analysis of power
    • Special Issue on Intelligent Distributed Information Systems
    • García, S., Fernández, A., Luengo, J., Herrera, F., Advanced nonparametric tests for multiple comparisons in the design of experiments in computational intelligence and data mining: Experimental analysis of power. Inform. Sci. 180:10 (2010), 2044–2064 Special Issue on Intelligent Distributed Information Systems.
    • (2010) Inform. Sci. , vol.180 , Issue.10 , pp. 2044-2064
    • García, S.1    Fernández, A.2    Luengo, J.3    Herrera, F.4
  • 34
    • 84919884105 scopus 로고    scopus 로고
    • A bayesian wilcoxon signed-rank test based on the dirichlet process
    • Proceedings of the 31th International Conference on Machine Learning, ICML
    • A. Benavoli, G. Corani, F. Mangili, M. Zaffalon, F. Ruggeri, A bayesian wilcoxon signed-rank test based on the dirichlet process, in: Proceedings of the 31th International Conference on Machine Learning, ICML 2014, 21–26, 2014, pp. 1026–1034.
    • (2014) , vol.2014 , pp. 21-26
    • Benavoli, A.1    Corani, G.2    Mangili, F.3    Zaffalon, M.4    Ruggeri, F.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.