-
1
-
-
0347989458
-
Cellular and molecular regulation of muscle regeneration
-
Chargé SB, Rudnicki MA (2004) Cellular and molecular regulation of muscle regeneration. Physiol Rev 84:209–238.
-
(2004)
Physiol Rev
, vol.84
, pp. 209-238
-
-
Chargé, S.B.1
Rudnicki, M.A.2
-
2
-
-
80051486498
-
Pax7-expressing satellite cells are indispensable for adult skeletal muscle regeneration
-
Sambasivan R, et al. (2011) Pax7-expressing satellite cells are indispensable for adult skeletal muscle regeneration. Development 138:3647–3656.
-
(2011)
Development
, vol.138
, pp. 3647-3656
-
-
Sambasivan, R.1
-
3
-
-
80051483036
-
An absolute requirement for Pax7-positive satellite cells in acute injury-induced skeletal muscle regeneration
-
Lepper C, Partridge TA, Fan CM (2011) An absolute requirement for Pax7-positive satellite cells in acute injury-induced skeletal muscle regeneration. Development 138:3639–3646.
-
(2011)
Development
, vol.138
, pp. 3639-3646
-
-
Lepper, C.1
Partridge, T.A.2
Fan, C.M.3
-
4
-
-
85011578163
-
Regulation of muscle growth and regeneration by the immune system
-
Tidball JG (2017) Regulation of muscle growth and regeneration by the immune system. Nat Rev Immunol 17:165–178.
-
(2017)
Nat Rev Immunol
, vol.17
, pp. 165-178
-
-
Tidball, J.G.1
-
5
-
-
33744821877
-
Macrophages and skeletal muscle regeneration: A clodronate-containing liposome depletion study
-
Summan M, et al. (2006) Macrophages and skeletal muscle regeneration: A clodronate-containing liposome depletion study. Am J Physiol Regul Integr Comp Physiol 290: R1488–R1495.
-
(2006)
Am J Physiol Regul Integr Comp Physiol
, vol.290
, pp. R1488-R1495
-
-
Summan, M.1
-
6
-
-
34248997759
-
Inflammatory monocytes recruited after skeletal muscle injury switch into antiinflammatory macrophages to support myogenesis
-
Arnold L, et al. (2007) Inflammatory monocytes recruited after skeletal muscle injury switch into antiinflammatory macrophages to support myogenesis. J Exp Med 204: 1057–1069.
-
(2007)
J Exp Med
, vol.204
, pp. 1057-1069
-
-
Arnold, L.1
-
7
-
-
53049103985
-
Suppression of macrophage functions impairs skeletal muscle regeneration with severe fibrosis
-
Segawa M, et al. (2008) Suppression of macrophage functions impairs skeletal muscle regeneration with severe fibrosis. Exp Cell Res 314:3232–3244.
-
(2008)
Exp Cell Res
, vol.314
, pp. 3232-3244
-
-
Segawa, M.1
-
8
-
-
84934441873
-
Monocyte/macrophage-derived IGF-1 orchestrates murine skeletal muscle regeneration and modulates autocrine polarization
-
Tonkin J, et al. (2015) Monocyte/macrophage-derived IGF-1 orchestrates murine skeletal muscle regeneration and modulates autocrine polarization. Mol Ther 23: 1189–1200.
-
(2015)
Mol Ther
, vol.23
, pp. 1189-1200
-
-
Tonkin, J.1
-
9
-
-
84999836788
-
Macrophage PPARγ, a lipid activated transcription factor controls the growth factor GDF3 and skeletal muscle regeneration
-
Varga T, et al. (2016) Macrophage PPARγ, a lipid activated transcription factor controls the growth factor GDF3 and skeletal muscle regeneration. Immunity 45: 1038–1051.
-
(2016)
Immunity
, vol.45
, pp. 1038-1051
-
-
Varga, T.1
-
10
-
-
34250669605
-
TNF-alpha regulates myogenesis and muscle regeneration by activating p38 MAPK
-
Chen SE, Jin B, Li YP (2007) TNF-alpha regulates myogenesis and muscle regeneration by activating p38 MAPK. Am J Physiol Cell Physiol 292:C1660–C1671.
-
(2007)
Am J Physiol Cell Physiol
, vol.292
, pp. C1660-C1671
-
-
Chen, S.E.1
Jin, B.2
Li, Y.P.3
-
11
-
-
84936889894
-
Nilotinib reduces muscle fibrosis in chronic muscle injury by promoting TNF-mediated apoptosis of fibro/adipogenic progenitors
-
Lemos DR, et al. (2015) Nilotinib reduces muscle fibrosis in chronic muscle injury by promoting TNF-mediated apoptosis of fibro/adipogenic progenitors. Nat Med 21: 786–794.
-
(2015)
Nat Med
, vol.21
, pp. 786-794
-
-
Lemos, D.R.1
-
12
-
-
70350445698
-
A CREB-C/EBPbeta cascade induces M2 macrophage-specific gene expression and promotes muscle injury repair
-
Ruffell D, et al. (2009) A CREB-C/EBPbeta cascade induces M2 macrophage-specific gene expression and promotes muscle injury repair. Proc Natl Acad Sci USA 106: 17475–17480.
-
(2009)
Proc Natl Acad Sci USA
, vol.106
, pp. 17475-17480
-
-
Ruffell, D.1
-
13
-
-
84866551217
-
IL-10 triggers changes in macrophage phenotype that promote muscle growth and regeneration
-
Deng B, Wehling-Henricks M, Villalta SA, Wang Y, Tidball JG (2012) IL-10 triggers changes in macrophage phenotype that promote muscle growth and regeneration. J Immunol 189:3669–3680.
-
(2012)
J Immunol
, vol.189
, pp. 3669-3680
-
-
Deng, B.1
Wehling-Henricks, M.2
Villalta, S.A.3
Wang, Y.4
Tidball, J.G.5
-
14
-
-
84881356321
-
AMPKα1 regulates macrophage skewing at the time of resolution of inflammation during skeletal muscle regeneration
-
Mounier R, et al. (2013) AMPKα1 regulates macrophage skewing at the time of resolution of inflammation during skeletal muscle regeneration. Cell Metab 18:251–264.
-
(2013)
Cell Metab
, vol.18
, pp. 251-264
-
-
Mounier, R.1
-
15
-
-
84890050252
-
A special population of regulatory T cells potentiates muscle repair
-
Burzyn D, et al. (2013) A special population of regulatory T cells potentiates muscle repair. Cell 155:1282–1295.
-
(2013)
Cell
, vol.155
, pp. 1282-1295
-
-
Burzyn, D.1
-
16
-
-
84908257266
-
Regulatory T cells suppress muscle inflammation and injury in muscular dystrophy
-
Villalta SA, et al. (2014) Regulatory T cells suppress muscle inflammation and injury in muscular dystrophy. Sci Transl Med 6:258ra142.
-
(2014)
Sci Transl Med
, vol.6
, pp. 258ra142
-
-
Villalta, S.A.1
-
17
-
-
84935031679
-
+ T cells recruited to sites of sterile skeletal muscle injury regulate the fate of satellite cells and guide effective tissue regeneration
-
+ T cells recruited to sites of sterile skeletal muscle injury regulate the fate of satellite cells and guide effective tissue regeneration. PLoS One 10:e0128094.
-
(2015)
PLoS One
, vol.10
, pp. e0128094
-
-
Castiglioni, A.1
-
18
-
-
84956705644
-
Poor repair of skeletal muscle in aging mice reflects a defect in local, IL-33-dependent, accumulation of regulatory T cells
-
Kuswanto W, et al. (2016) Poor repair of skeletal muscle in aging mice reflects a defect in local, IL-33-dependent, accumulation of regulatory T cells. Immunity 44: 355–367.
-
(2016)
Immunity
, vol.44
, pp. 355-367
-
-
Kuswanto, W.1
-
19
-
-
84975126913
-
Highly dynamic transcriptional signature of distinct macrophage aubsets during sterile inflammation, resolution, and tissue repair
-
Varga T, et al. (2016) Highly dynamic transcriptional signature of distinct macrophage aubsets during sterile inflammation, resolution, and tissue repair. J Immunol 196: 4771–4782.
-
(2016)
J Immunol
, vol.196
, pp. 4771-4782
-
-
Varga, T.1
-
20
-
-
84867740805
-
Gene-expression profiles and transcriptional regulatory pathways that underlie the identity and diversity of mouse tissue macrophages
-
Genome Consortium
-
Gautier EL, et al.; Immunological Genome Consortium (2012) Gene-expression profiles and transcriptional regulatory pathways that underlie the identity and diversity of mouse tissue macrophages. Nat Immunol 13:1118–1128.
-
(2012)
Nat Immunol
, vol.13
, pp. 1118-1128
-
-
Gautier, E.L.1
-
21
-
-
79958715229
-
Local macrophage proliferation, rather than recruitment from the blood, is a signature of TH2 inflammation
-
Jenkins SJ, et al. (2011) Local macrophage proliferation, rather than recruitment from the blood, is a signature of TH2 inflammation. Science 332:1284–1288.
-
(2011)
Science
, vol.332
, pp. 1284-1288
-
-
Jenkins, S.J.1
-
22
-
-
84956883431
-
Novel markers to delineate murine M1 and M2 macrophages
-
Jablonski KA, et al. (2015) Novel markers to delineate murine M1 and M2 macrophages. PLoS One 10:e0145342.
-
(2015)
PLoS One
, vol.10
, pp. e0145342
-
-
Jablonski, K.A.1
-
23
-
-
84894102230
-
Transcriptome-based network analysis reveals a spectrum model of human macrophage activation
-
Xue J, et al. (2014) Transcriptome-based network analysis reveals a spectrum model of human macrophage activation. Immunity 40:274–288.
-
(2014)
Immunity
, vol.40
, pp. 274-288
-
-
Xue, J.1
-
24
-
-
0035809926
-
Deletion of murine SMN exon 7 directed to skeletal muscle leads to severe muscular dystrophy
-
Cifuentes-Diaz C, et al. (2001) Deletion of murine SMN exon 7 directed to skeletal muscle leads to severe muscular dystrophy. J Cell Biol 152:1107–1114.
-
(2001)
J Cell Biol
, vol.152
, pp. 1107-1114
-
-
Cifuentes-Diaz, C.1
-
25
-
-
33846485153
-
Regulatory T cells prevent catastrophic autoimmunity throughout the lifespan of mice
-
Kim JM, Rasmussen JP, Rudensky AY (2007) Regulatory T cells prevent catastrophic autoimmunity throughout the lifespan of mice. Nat Immunol 8:191–197.
-
(2007)
Nat Immunol
, vol.8
, pp. 191-197
-
-
Kim, J.M.1
Rasmussen, J.P.2
Rudensky, A.Y.3
-
26
-
-
84856721921
-
Aberrant repair and fibrosis development in skeletal muscle
-
Mann CJ, et al. (2011) Aberrant repair and fibrosis development in skeletal muscle. Skelet Muscle 1:21.
-
(2011)
Skelet Muscle
, vol.1
, pp. 21
-
-
Mann, C.J.1
-
27
-
-
0020442220
-
Regulation of murine macrophage Ia antigen expression by a lymphokine with immune interferon activity
-
Steeg PS, Moore RN, Johnson HM, Oppenheim JJ (1982) Regulation of murine macrophage Ia antigen expression by a lymphokine with immune interferon activity. J Exp Med 156:1780–1793.
-
(1982)
J Exp Med
, vol.156
, pp. 1780-1793
-
-
Steeg, P.S.1
Moore, R.N.2
Johnson, H.M.3
Oppenheim, J.J.4
-
28
-
-
48249099757
-
Endogenous interferon-gamma is required for efficient skeletal muscle regeneration
-
Cheng M, Nguyen MH, Fantuzzi G, Koh TJ (2008) Endogenous interferon-gamma is required for efficient skeletal muscle regeneration. Am J Physiol Cell Physiol 294: C1183–C1191.
-
(2008)
Am J Physiol Cell Physiol
, vol.294
, pp. C1183-C1191
-
-
Cheng, M.1
Nguyen, M.H.2
Fantuzzi, G.3
Koh, T.J.4
-
29
-
-
26844464792
-
CD4+CD25+ regulatory T cells inhibit natural killer cell functions in a transforming growth factor-beta-dependent manner
-
Ghiringhelli F, et al. (2005) CD4+CD25+ regulatory T cells inhibit natural killer cell functions in a transforming growth factor-beta-dependent manner. J Exp Med 202: 1075–1085.
-
(2005)
J Exp Med
, vol.202
, pp. 1075-1085
-
-
Ghiringhelli, F.1
-
30
-
-
31144468294
-
CD4+CD25+ T regulatory cells suppress NK cell-mediated immunotherapy of cancer
-
Smyth MJ, et al. (2006) CD4+CD25+ T regulatory cells suppress NK cell-mediated immunotherapy of cancer. J Immunol 176:1582–1587.
-
(2006)
J Immunol
, vol.176
, pp. 1582-1587
-
-
Smyth, M.J.1
-
31
-
-
84880690658
-
Regulatory T cells control NK cells in an insulitic lesion by depriving them of IL-2
-
Sitrin J, Ring A, Garcia KC, Benoist C, Mathis D (2013) Regulatory T cells control NK cells in an insulitic lesion by depriving them of IL-2. J Exp Med 210:1153–1165.
-
(2013)
J Exp Med
, vol.210
, pp. 1153-1165
-
-
Sitrin, J.1
Ring, A.2
Garcia, K.C.3
Benoist, C.4
Mathis, D.5
-
32
-
-
84880669245
-
IL-2-dependent tuning of NK cell sensitivity for target cells is controlled by regulatory T cells
-
Gasteiger G, et al. (2013) IL-2-dependent tuning of NK cell sensitivity for target cells is controlled by regulatory T cells. J Exp Med 210:1167–1178.
-
(2013)
J Exp Med
, vol.210
, pp. 1167-1178
-
-
Gasteiger, G.1
-
33
-
-
0042889170
-
Gamma interferon as an antifibrosis agent in skeletal muscle
-
Foster W, Li Y, Usas A, Somogyi G, Huard J (2003) Gamma interferon as an antifibrosis agent in skeletal muscle. J Orthop Res 21:798–804.
-
(2003)
J Orthop Res
, vol.21
, pp. 798-804
-
-
Foster, W.1
Li, Y.2
Usas, A.3
Somogyi, G.4
Huard, J.5
-
34
-
-
81455154927
-
IFN-γ promotes muscle damage in the mdx mouse model of Duchenne muscular dystrophy by suppressing M2 macrophage activation and inhibiting muscle cell proliferation
-
Villalta SA, Deng B, Rinaldi C, Wehling-Henricks M, Tidball JG (2011) IFN-γ promotes muscle damage in the mdx mouse model of Duchenne muscular dystrophy by suppressing M2 macrophage activation and inhibiting muscle cell proliferation. J Immunol 187:5419–5428.
-
(2011)
J Immunol
, vol.187
, pp. 5419-5428
-
-
Villalta, S.A.1
Deng, B.2
Rinaldi, C.3
Wehling-Henricks, M.4
Tidball, J.G.5
-
35
-
-
79960368825
-
Gamma interferon modulates myogenesis through the major histocompatibility complex class II transactivator, CIITA
-
Londhe P, Davie JK (2011) Gamma interferon modulates myogenesis through the major histocompatibility complex class II transactivator, CIITA. Mol Cell Biol 31: 2854–2866.
-
(2011)
Mol Cell Biol
, vol.31
, pp. 2854-2866
-
-
Londhe, P.1
Davie, J.K.2
-
36
-
-
84891845285
-
Interferon-γ resets muscle cell fate by stimulating the sequential recruitment of JARID2 and PRC2 to promoters to repress myogenesis
-
Londhe P, Davie JK (2013) Interferon-γ resets muscle cell fate by stimulating the sequential recruitment of JARID2 and PRC2 to promoters to repress myogenesis. Sci Signal 6:ra107.
-
(2013)
Sci Signal
, vol.6
, pp. ra107
-
-
Londhe, P.1
Davie, J.K.2
-
37
-
-
84862986986
-
PPAR-γ is a major driver of the accumulation and phenotype of adipose tissue Treg cells
-
Cipolletta D, et al. (2012) PPAR-γ is a major driver of the accumulation and phenotype of adipose tissue Treg cells. Nature 486:549–553.
-
(2012)
Nature
, vol.486
, pp. 549-553
-
-
Cipolletta, D.1
-
38
-
-
61449172037
-
Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources
-
Huang da W, Sherman BT, Lempicki RA (2009) Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 4:44–57.
-
(2009)
Nat Protoc
, vol.4
, pp. 44-57
-
-
Da Huang, W.1
Sherman, B.T.2
Lempicki, R.A.3
-
39
-
-
58549112996
-
Bioinformatics enrichment tools: Paths toward the comprehensive functional analysis of large gene lists
-
Huang da W, Sherman BT, Lempicki RA (2009) Bioinformatics enrichment tools: Paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res 37:1–13.
-
(2009)
Nucleic Acids Res
, vol.37
, pp. 1-13
-
-
Da Huang, W.1
Sherman, B.T.2
Lempicki, R.A.3
-
40
-
-
84955599188
-
Parsing the interferon transcriptional network and its disease associations
-
Genome Project Consortium
-
Mostafavi S, et al.; Immunological Genome Project Consortium (2016) Parsing the interferon transcriptional network and its disease associations. Cell 164:564–578.
-
(2016)
Cell
, vol.164
, pp. 564-578
-
-
Mostafavi, S.1
-
41
-
-
52649097448
-
The immunological genome project: Networks of gene expression in immune cells
-
Heng TS, Painter MW; Immunological Genome Project Consortium (2008) The immunological genome project: Networks of gene expression in immune cells. Nat Immunol 9:1091–1094.
-
(2008)
Nat Immunol
, vol.9
, pp. 1091-1094
-
-
Heng, T.S.1
Painter, M.W.2
|