-
1
-
-
84872718164
-
Surprise maximization reveals the community structure of complex networks
-
Aldecoa R, Marín I. 2013. Surprise maximization reveals the community structure of complex networks. Scientific Reports 3:1060. DOI: https://doi.org/10.1038/srep01060
-
(2013)
Scientific Reports
, vol.3
, pp. 1060
-
-
Aldecoa, R.1
Marín, I.2
-
2
-
-
23244432007
-
An integrative theory of locus coeruleus-norepinephrine function: Adaptive gain and optimal performance
-
Aston-Jones G, Cohen JD. 2005. An integrative theory of locus coeruleus-norepinephrine function: adaptive gain and optimal performance. Annual Review of Neuroscience 28:403-450. DOI: https://doi.org/10.1146/annurev. neuro.28.061604.135709
-
(2005)
Annual Review of Neuroscience
, vol.28
, pp. 403-450
-
-
Aston-Jones, G.1
Cohen, J.D.2
-
3
-
-
84921415084
-
Signature of consciousness in the dynamics of resting-state brain activity
-
Barttfeld P, Uhrig L, Sitt JD, Sigman M, Jarraya B, Dehaene S. 2015. Signature of consciousness in the dynamics of resting-state brain activity. PNAS 112:887-892. DOI: https://doi.org/10.1073/pnas.1418031112
-
(2015)
PNAS
, vol.112
, pp. 887-892
-
-
Barttfeld, P.1
Uhrig, L.2
Sitt, J.D.3
Sigman, M.4
Jarraya, B.5
Dehaene, S.6
-
6
-
-
79952644099
-
Generative models of cortical oscillations: Neurobiological implications of the kuramoto model
-
Breakspear M, Heitmann S, Daffertshofer A. 2010. Generative models of cortical oscillations: neurobiological implications of the kuramoto model. Frontiers in Human Neuroscience 4:190. DOI: https://doi.org/10.3389/ fnhum.2010.00190
-
(2010)
Frontiers in Human Neuroscience
, vol.4
, pp. 190
-
-
Breakspear, M.1
Heitmann, S.2
Daffertshofer, A.3
-
7
-
-
85013766858
-
Dynamic models of large-scale brain activity
-
Breakspear M. 2017. Dynamic models of large-scale brain activity. Nature Neuroscience 20:340-352. DOI: https://doi.org/10.1038/nn.4497
-
(2017)
Nature Neuroscience
, vol.20
, pp. 340-352
-
-
Breakspear, M.1
-
8
-
-
84859948255
-
The economy of brain network organization
-
Bullmore E, Sporns O. 2012. The economy of brain network organization. Nature Reviews Neuroscience 13:336-349. DOI: https://doi.org/10.1038/nrn3214
-
(2012)
Nature Reviews Neuroscience
, vol.13
, pp. 336-349
-
-
Bullmore, E.1
Sporns, O.2
-
9
-
-
75249093217
-
Time-frequency dynamics of resting-state brain connectivity measured with fMRI
-
Chang C, Glover GH. 2010. Time-frequency dynamics of resting-state brain connectivity measured with fMRI. NeuroImage 50:81-98. DOI: https://doi.org/10.1016/j.neuroimage.2009.12.011
-
(2010)
NeuroImage
, vol.50
, pp. 81-98
-
-
Chang, C.1
Glover, G.H.2
-
10
-
-
77957565867
-
Emergent complex neural dynamics
-
Chialvo DR. 2010. Emergent complex neural dynamics. Nature Physics 6:744-750. DOI: https://doi.org/10.1038/ nphys1803
-
(2010)
Nature Physics
, vol.6
, pp. 744-750
-
-
Chialvo, D.R.1
-
11
-
-
85028500862
-
Criticality in the brain: A synthesis of neurobiology, models and cognition
-
Cocchi L, Gollo LL, Zalesky A, Breakspear M. 2017. Criticality in the brain: A synthesis of neurobiology, models and cognition. Progress in Neurobiology 158:132-152. DOI: https://doi.org/10.1016/j.pneurobio.2017.07.002
-
(2017)
Progress in Neurobiology
, vol.158
, pp. 132-152
-
-
Cocchi, L.1
Gollo, L.L.2
Zalesky, A.3
Breakspear, M.4
-
12
-
-
85006064044
-
The segregation and integration of distinct brain networks and their relationship to cognition
-
Cohen JR, D’Esposito M. 2016. The segregation and integration of distinct brain networks and their relationship to cognition. Journal of Neuroscience 36:12083-12094. DOI: https://doi.org/10.1523/JNEUROSCI.2965-15. 2016
-
(2016)
Journal of Neuroscience
, vol.36
, pp. 12083-12094
-
-
Cohen, J.R.1
D’Esposito, M.2
-
13
-
-
69449105310
-
A simple model of cortical dynamics explains variability and state dependence of sensory responses in urethane-anesthetized auditory cortex
-
Curto C, Sakata S, Marguet S, Itskov V, Harris KD. 2009. A simple model of cortical dynamics explains variability and state dependence of sensory responses in urethane-anesthetized auditory cortex. Journal of Neuroscience 29:10600-10612. DOI: https://doi.org/10.1523/JNEUROSCI.2053-09.2009
-
(2009)
Journal of Neuroscience
, vol.29
, pp. 10600-10612
-
-
Curto, C.1
Sakata, S.2
Marguet, S.3
Itskov, V.4
Harris, K.D.5
-
14
-
-
67649886440
-
Key role of coupling, delay, and noise in resting brain fluctuations
-
Deco G, Jirsa V, McIntosh AR, Sporns O, Kötter R. 2009. Key role of coupling, delay, and noise in resting brain fluctuations. PNAS 106:10302-10307. DOI: https://doi.org/10.1073/pnas.0901831106
-
(2009)
PNAS
, vol.106
, pp. 10302-10307
-
-
Deco, G.1
Jirsa, V.2
McIntosh, A.R.3
Sporns, O.4
Kötter, R.5
-
15
-
-
84877149884
-
Resting brains never rest: Computational insights into potential cognitive architectures
-
Deco G, Jirsa VK, McIntosh AR. 2013. Resting brains never rest: computational insights into potential cognitive architectures. Trends in Neurosciences 36:268-274. DOI: https://doi.org/10.1016/j.tins.2013.03.001
-
(2013)
Trends in Neurosciences
, vol.36
, pp. 268-274
-
-
Deco, G.1
Jirsa, V.K.2
McIntosh, A.R.3
-
16
-
-
84857802687
-
Ongoing cortical activity at rest: Criticality, multistability, and ghost attractors
-
Deco G, Jirsa VK. 2012. Ongoing cortical activity at rest: criticality, multistability, and ghost attractors. Journal of Neuroscience 32:3366-3375. DOI: https://doi.org/10.1523/JNEUROSCI.2523-11.2012
-
(2012)
Journal of Neuroscience
, vol.32
, pp. 3366-3375
-
-
Deco, G.1
Jirsa, V.K.2
-
17
-
-
85020425303
-
The dynamics of resting fluctuations in the brain: Metastability and its dynamical cortical core
-
Deco G, Kringelbach ML, Jirsa VK, Ritter P. 2017. The dynamics of resting fluctuations in the brain: metastability and its dynamical cortical core. Scientific Reports 7:3095. DOI: https://doi.org/10.1038/s41598-017-03073-5
-
(2017)
Scientific Reports
, vol.7
, pp. 3095
-
-
Deco, G.1
Kringelbach, M.L.2
Jirsa, V.K.3
Ritter, P.4
-
18
-
-
84932197976
-
Rethinking segregation and integration: Contributions of whole-brain modelling
-
Deco G, Tononi G, Boly M, Kringelbach ML. 2015a. Rethinking segregation and integration: contributions of whole-brain modelling. Nature Reviews Neuroscience 16:430-439. DOI: https://doi.org/10.1038/nrn3963
-
(2015)
Nature Reviews Neuroscience
, vol.16
, pp. 430-439
-
-
Deco, G.1
Tononi, G.2
Boly, M.3
Kringelbach, M.L.4
-
19
-
-
84932197976
-
Rethinking segregation and integration: Contributions of whole-brain modelling
-
Deco G, Tononi G, Boly M, Kringelbach ML. 2015b. Rethinking segregation and integration: contributions of whole-brain modelling. Nature Reviews Neuroscience 16:430-439. DOI: https://doi.org/10.1038/nrn3963
-
(2015)
Nature Reviews Neuroscience
, vol.16
, pp. 430-439
-
-
Deco, G.1
Tononi, G.2
Boly, M.3
Kringelbach, M.L.4
-
20
-
-
84880911656
-
The effects of neural gain on attention and learning
-
Eldar E, Cohen JD, Niv Y. 2013. The effects of neural gain on attention and learning. Nature Neuroscience 16:1146-1153. DOI: https://doi.org/10.1038/nn.3428
-
(2013)
Nature Neuroscience
, vol.16
, pp. 1146-1153
-
-
Eldar, E.1
Cohen, J.D.2
Niv, Y.3
-
21
-
-
40949124684
-
Communicability in complex networks
-
Estrada E, Hatano N. 2008. Communicability in complex networks. Physical Review E 77:036111. DOI: https:// doi.org/10.1103/PhysRevE.77.036111
-
(2008)
Physical Review E
, vol.77
, pp. 036111
-
-
Estrada, E.1
Hatano, N.2
-
22
-
-
53349102813
-
Impulses and physiological states in theoretical models of nerve membrane
-
Fitzhugh R. 1961. Impulses and physiological states in theoretical models of nerve membrane. Biophysical Journal 1:445-466. DOI: https://doi.org/10.1016/S0006-3495(61)86902-6
-
(1961)
Biophysical Journal
, vol.1
, pp. 445-466
-
-
Fitzhugh, R.1
-
23
-
-
84962019136
-
Spontaneous Neural Dynamics and Multi- scale Network Organization
-
Foster BL, He BJ, Honey CJ, Jerbi K, Maier A, Saalmann YB. 2016. Spontaneous Neural Dynamics and Multi- scale Network Organization. Frontiers in Systems Neuroscience 10:7. DOI: https://doi.org/10.3389/fnsys.2016. 00007
-
(2016)
Frontiers in Systems Neuroscience
, vol.10
, pp. 7
-
-
Foster, B.L.1
He, B.J.2
Honey, C.J.3
Jerbi, K.4
Maier, A.5
Saalmann, Y.B.6
-
24
-
-
0018673582
-
Nonlinear gain mediating cortical stimulus-response relations
-
Freeman WJ. 1979. Nonlinear gain mediating cortical stimulus-response relations. Biological Cybernetics 33:237-247. DOI: https://doi.org/10.1007/BF00337412
-
(1979)
Biological Cybernetics
, vol.33
, pp. 237-247
-
-
Freeman, W.J.1
-
25
-
-
25144464991
-
A mechanism for cognitive dynamics: Neuronal communication through neuronal coherence
-
Fries P. 2005. A mechanism for cognitive dynamics: neuronal communication through neuronal coherence. Trends in Cognitive Sciences 9:474-480. DOI: https://doi.org/10.1016/j.tics.2005.08.011
-
(2005)
Trends in Cognitive Sciences
, vol.9
, pp. 474-480
-
-
Fries, P.1
-
26
-
-
84943277272
-
Rhythms for Cognition: Communication through coherence
-
Fries P. 2015. Rhythms for Cognition: Communication through coherence. Neuron 88:220-235. DOI: https://doi. org/10.1016/j.neuron.2015.09.034
-
(2015)
Neuron
, vol.88
, pp. 220-235
-
-
Fries, P.1
-
27
-
-
0033778839
-
Nonlinear responses in fMRI: The Balloon model, Volterra kernels, and other hemodynamics
-
Friston KJ, Mechelli A, Turner R, Price CJ. 2000. Nonlinear responses in fMRI: the Balloon model, Volterra kernels, and other hemodynamics. NeuroImage 12:466-477. DOI: https://doi.org/10.1006/nimg.2000.0630
-
(2000)
NeuroImage
, vol.12
, pp. 466-477
-
-
Friston, K.J.1
Mechelli, A.2
Turner, R.3
Price, C.J.4
-
28
-
-
55449107481
-
Noise during rest enables the exploration of the brain’s dynamic repertoire
-
Ghosh A, Rho Y, McIntosh AR, Kötter R, Jirsa VK. 2008. Noise during rest enables the exploration of the brain’s dynamic repertoire. PLoS Computational Biology 4:e1000196. DOI: https://doi.org/10.1371/journal.pcbi. 1000196
-
(2008)
PLoS Computational Biology
, vol.4
-
-
Ghosh, A.1
Rho, Y.2
McIntosh, A.R.3
Kötter, R.4
Jirsa, V.K.5
-
29
-
-
84925597534
-
Breakdown of the brain’s functional network modularity with awareness
-
Godwin D, Barry RL, Marois R. 2015. Breakdown of the brain’s functional network modularity with awareness. PNAS 112:3799-3804. DOI: https://doi.org/10.1073/pnas.1414466112
-
(2015)
PNAS
, vol.112
, pp. 3799-3804
-
-
Godwin, D.1
Barry, R.L.2
Marois, R.3
-
30
-
-
84926184109
-
Dwelling quietly in the rich club: Brain network determinants of slow cortical fluctuations
-
Gollo LL, Zalesky A, Hutchison RM, van den Heuvel M, Breakspear M. 2015. Dwelling quietly in the rich club:brain network determinants of slow cortical fluctuations. Philosophical Transactions of the Royal Society B:Biological Sciences 370:20140165. DOI: https://doi.org/10.1098/rstb.2014.0165
-
(2015)
Philosophical Transactions of the Royal Society B:Biological Sciences
, vol.370
, pp. 20140165
-
-
Gollo, L.L.1
Zalesky, A.2
Hutchison, R.M.3
van den Heuvel, M.4
Breakspear, M.5
-
31
-
-
85028651187
-
Reconfiguration of Brain Network Architectures between Resting-State and Complexity-Dependent Cognitive Reasoning
-
Hearne LJ, Cocchi L, Zalesky A, Mattingley JB. 2017. Reconfiguration of Brain Network Architectures between Resting-State and Complexity-Dependent Cognitive Reasoning. The Journal of Neuroscience 37:0485-17-0488411. DOI: https://doi.org/10.1523/JNEUROSCI.0485-17.2017
-
(2017)
The Journal of Neuroscience
, vol.37
-
-
Hearne, L.J.1
Cocchi, L.2
Zalesky, A.3
Mattingley, J.B.4
-
33
-
-
34547219105
-
Network structure of cerebral cortex shapes functional connectivity on multiple time scales
-
Honey CJ, Kötter R, Breakspear M, Sporns O. 2007. Network structure of cerebral cortex shapes functional connectivity on multiple time scales. PNAS 104:10240-10245. DOI: https://doi.org/10.1073/pnas.0701519104
-
(2007)
PNAS
, vol.104
, pp. 10240-10245
-
-
Honey, C.J.1
Kötter, R.2
Breakspear, M.3
Sporns, O.4
-
34
-
-
60549089357
-
Predicting human resting- state functional connectivity from structural connectivity
-
Honey CJ, Sporns O, Cammoun L, Gigandet X, Thiran JP, Meuli R, Hagmann P. 2009. Predicting human resting- state functional connectivity from structural connectivity. PNAS 106:2035-2040. DOI: https://doi.org/10.1073/ pnas.0811168106
-
(2009)
PNAS
, vol.106
, pp. 2035-2040
-
-
Honey, C.J.1
Sporns, O.2
Cammoun, L.3
Gigandet, X.4
Thiran, J.P.5
Meuli, R.6
Hagmann, P.7
-
35
-
-
84880333792
-
Dynamic functional connectivity: Promise, issues, and interpretations
-
Hutchison RM, Womelsdorf T, Allen EA, Bandettini PA, Calhoun VD, Corbetta M, Della Penna S, Duyn JH, Glover GH, Gonzalez-Castillo J, Handwerker DA, Keilholz S, Kiviniemi V, Leopold DA, de Pasquale F, Sporns O, Walter M, Chang C. 2013. Dynamic functional connectivity: promise, issues, and interpretations. NeuroImage 80:360-378. DOI: https://doi.org/10.1016/j.neuroimage.2013.05.079
-
(2013)
NeuroImage
, vol.80
, pp. 360-378
-
-
Hutchison, R.M.1
Womelsdorf, T.2
Allen, E.A.3
Bandettini, P.A.4
Calhoun, V.D.5
Corbetta, M.6
Della Penna, S.7
Duyn, J.H.8
Glover, G.H.9
Gonzalez-Castillo, J.10
Handwerker, D.A.11
Keilholz, S.12
Kiviniemi, V.13
Leopold, D.A.14
de Pasquale, F.15
Sporns, O.16
Walter, M.17
Chang, C.18
-
36
-
-
85020392776
-
The human thalamus is an integrative Hub for functional brain networks
-
Hwang K, Bertolero MA, Liu WB, D’Esposito M. 2017. The human thalamus is an integrative Hub for functional brain networks. The Journal of Neuroscience 37:5594-5607. DOI: https://doi.org/10.1523/JNEUROSCI.0067-17.2017
-
(2017)
The Journal of Neuroscience
, vol.37
, pp. 5594-5607
-
-
Hwang, K.1
Bertolero, M.A.2
Liu, W.B.3
D’Esposito, M.4
-
37
-
-
72149105121
-
FitzHugh-Nagumo model
-
Izhikevich E, FitzHugh R. 2006. FitzHugh-Nagumo model. Scholarpedia 1:1349. DOI: https://doi.org/10.4249/ scholarpedia.1349
-
(2006)
Scholarpedia
, vol.1
, pp. 1349
-
-
Izhikevich, E.1
FitzHugh, R.2
-
38
-
-
78650493262
-
Towards the virtual brain: Network modeling of the intact and the damaged brain
-
Jirsa VK, Sporns O, Breakspear M, Deco G, McIntosh AR. 2010. Towards the virtual brain: network modeling of the intact and the damaged brain. Archives Italiennes De Biologie 148:189-205.
-
(2010)
Archives Italiennes De Biologie
, vol.148
, pp. 189-205
-
-
Jirsa, V.K.1
Sporns, O.2
Breakspear, M.3
Deco, G.4
McIntosh, A.R.5
-
39
-
-
84953715312
-
Relationships between Pupil Diameter and Neuronal Activity in the Locus Coeruleus, Colliculi, and Cingulate Cortex
-
Joshi S, Li Y, Kalwani RM, Gold JI. 2016. Relationships between Pupil Diameter and Neuronal Activity in the Locus Coeruleus, Colliculi, and Cingulate Cortex. Neuron 89:221-234. DOI: https://doi.org/10.1016/j.neuron. 2015.11.028
-
(2016)
Neuron
, vol.89
, pp. 221-234
-
-
Joshi, S.1
Li, Y.2
Kalwani, R.M.3
Gold, J.I.4
-
41
-
-
6344245918
-
Online retrieval, processing, and visualization of primate connectivity data from the CoCoMac database
-
Kötter R. 2004. Online retrieval, processing, and visualization of primate connectivity data from the CoCoMac database. Neuroinformatics 2:127-144. DOI: https://doi.org/10.1385/NI:2:2:127
-
(2004)
Neuroinformatics
, vol.2
, pp. 127-144
-
-
Kötter, R.1
-
42
-
-
84875515072
-
The q-g neural code
-
Lisman JE, Jensen O. 2013. The q-g neural code. Neuron 77:1002-1016. DOI: https://doi.org/10.1016/j.neuron. 2013.03.007
-
(2013)
Neuron
, vol.77
, pp. 1002-1016
-
-
Lisman, J.E.1
Jensen, O.2
-
43
-
-
84931058648
-
Cooperative and competitive spreading dynamics on the human connectome
-
Mišić B, Betzel RF, Nematzadeh A, Goñi J, Griffa A, Hagmann P, Flammini A, Ahn YY, Sporns O. 2015. Cooperative and competitive spreading dynamics on the human connectome. Neuron 86:1518-1529. DOI: https://doi.org/10.1016/j.neuron.2015.05.035
-
(2015)
Neuron
, vol.86
, pp. 1518-1529
-
-
Mišić, B.1
Betzel, R.F.2
Nematzadeh, A.3
Goñi, J.4
Griffa, A.5
Hagmann, P.6
Flammini, A.7
Ahn, Y.Y.8
Sporns, O.9
-
44
-
-
84904010801
-
Pupil diameter covaries with BOLD activity in human locus coeruleus
-
Murphy PR, O’Connell RG, O’Sullivan M, Robertson IH, Balsters JH. 2014. Pupil diameter covaries with BOLD activity in human locus coeruleus. Human Brain Mapping 35:4140-4154. DOI: https://doi.org/10.1002/hbm. 22466
-
(2014)
Human Brain Mapping
, vol.35
, pp. 4140-4154
-
-
Murphy, P.R.1
O’Connell, R.G.2
O’Sullivan, M.3
Robertson, I.H.4
Balsters, J.H.5
-
45
-
-
84887291519
-
Structural and functional brain networks: From connections to cognition
-
Park HJ, Friston K. 2013. Structural and functional brain networks: from connections to cognition. Science 342:1238411. DOI: https://doi.org/10.1126/science.1238411
-
(2013)
Science
, vol.342
, pp. 1238411
-
-
Park, H.J.1
Friston, K.2
-
46
-
-
84908241101
-
Pupil fluctuations track fast switching of cortical states during quiet wakefulness
-
Reimer J, Froudarakis E, Cadwell CR, Yatsenko D, Denfield GH, Tolias AS. 2014. Pupil fluctuations track fast switching of cortical states during quiet wakefulness. Neuron 84:355-362. DOI: https://doi.org/10.1016/j. neuron.2014.09.033
-
(2014)
Neuron
, vol.84
, pp. 355-362
-
-
Reimer, J.1
Froudarakis, E.2
Cadwell, C.R.3
Yatsenko, D.4
Denfield, G.H.5
Tolias, A.S.6
-
47
-
-
84994440012
-
Pupil fluctuations track rapid changes in adrenergic and cholinergic activity in cortex
-
Reimer J, McGinley MJ, Liu Y, Rodenkirch C, Wang Q, McCormick DA, Tolias AS. 2016. Pupil fluctuations track rapid changes in adrenergic and cholinergic activity in cortex. Nature Communications 7:13289. DOI: https:// doi.org/10.1038/ncomms13289
-
(2016)
Nature Communications
, vol.7
, pp. 13289
-
-
Reimer, J.1
McGinley, M.J.2
Liu, Y.3
Rodenkirch, C.4
Wang, Q.5
McCormick, D.A.6
Tolias, A.S.7
-
48
-
-
67651021134
-
The neuropsychopharmacology of fronto-executive function: Monoaminergic modulation
-
Robbins TW, Arnsten AF. 2009. The neuropsychopharmacology of fronto-executive function: monoaminergic modulation. Annual Review of Neuroscience 32:267-287. DOI: https://doi.org/10.1146/annurev.neuro.051508. 135535
-
(2009)
Annual Review of Neuroscience
, vol.32
, pp. 267-287
-
-
Robbins, T.W.1
Arnsten, A.F.2
-
50
-
-
85027956585
-
Consistency-based thresholding of the human connectome
-
Roberts JA, Perry A, Roberts G, Mitchell PB, Breakspear M. 2017. Consistency-based thresholding of the human connectome. NeuroImage 145:118-129. DOI: https://doi.org/10.1016/j.neuroimage.2016.09.053
-
(2017)
NeuroImage
, vol.145
, pp. 118-129
-
-
Roberts, J.A.1
Perry, A.2
Roberts, G.3
Mitchell, P.B.4
Breakspear, M.5
-
51
-
-
77954385460
-
Complex network measures of brain connectivity: Uses and interpretations
-
Rubinov M, Sporns O. 2010. Complex network measures of brain connectivity: uses and interpretations. NeuroImage 52:1059-1069. DOI: https://doi.org/10.1016/j.neuroimage.2009.10.003
-
(2010)
NeuroImage
, vol.52
, pp. 1059-1069
-
-
Rubinov, M.1
Sporns, O.2
-
52
-
-
0001040012
-
Numerical Treatment of Stochastic Differential Equations
-
Rüemelin W. 1982. Numerical Treatment of Stochastic Differential Equations. SIAM Journal on Numerical Analysis 19:604-613. DOI: https://doi.org/10.1137/0719041
-
(1982)
SIAM Journal on Numerical Analysis
, vol.19
, pp. 604-613
-
-
Rüemelin, W.1
-
53
-
-
84944255814
-
Modeling the effect of locus coeruleus firing on cortical state dynamics and single-trial sensory processing
-
Safaai H, Neves R, Eschenko O, Logothetis NK, Panzeri S. 2015. Modeling the effect of locus coeruleus firing on cortical state dynamics and single-trial sensory processing. PNAS 112:12834-12839. DOI: https://doi.org/10. 1073/pnas.1516539112
-
(2015)
PNAS
, vol.112
, pp. 12834-12839
-
-
Safaai, H.1
Neves, R.2
Eschenko, O.3
Logothetis, N.K.4
Panzeri, S.5
-
54
-
-
84887346193
-
The Virtual Brain: A simulator of primate brain network dynamics
-
Sanz Leon P, Knock SA, Woodman MM, Domide L, Mersmann J, McIntosh AR, Jirsa V. 2013. The Virtual Brain: a simulator of primate brain network dynamics. Frontiers in Neuroinformatics 7:10. DOI: https://doi.org/10.3389/ fninf.2013.00010
-
(2013)
Frontiers in Neuroinformatics
, vol.7
, pp. 10
-
-
Sanz Leon, P.1
Knock, S.A.2
Woodman, M.M.3
Domide, L.4
Mersmann, J.5
McIntosh, A.R.6
Jirsa, V.7
-
55
-
-
60549092240
-
The locus coeruleus and noradrenergic modulation of cognition
-
Sara SJ. 2009. The locus coeruleus and noradrenergic modulation of cognition. Nature Reviews Neuroscience 10:211-223. DOI: https://doi.org/10.1038/nrn2573
-
(2009)
Nature Reviews Neuroscience
, vol.10
, pp. 211-223
-
-
Sara, S.J.1
-
56
-
-
0025118803
-
A network model of catecholamine effects: Gain, signal-to-noise ratio, and behavior
-
Servan-Schreiber D, Printz H, Cohen JD. 1990. A network model of catecholamine effects: gain, signal-to-noise ratio, and behavior. Science 249:892-895. DOI: https://doi.org/10.1126/science.2392679
-
(1990)
Science
, vol.249
, pp. 892-895
-
-
Servan-Schreiber, D.1
Printz, H.2
Cohen, J.D.3
-
57
-
-
84992378782
-
The dynamics of functional brain networks: Integrated network states during cognitive task performance
-
Shine JM, Bissett PG, Bell PT, Koyejo O, Balsters JH, Gorgolewski KJ, Moodie CA, Poldrack RA. 2016a. The dynamics of functional brain networks: integrated network states during cognitive task performance. Neuron 92:544-554. DOI: https://doi.org/10.1016/j.neuron.2016.09.018
-
(2016)
Neuron
, vol.92
, pp. 544-554
-
-
Shine, J.M.1
Bissett, P.G.2
Bell, P.T.3
Koyejo, O.4
Balsters, J.H.5
Gorgolewski, K.J.6
Moodie, C.A.7
Poldrack, R.A.8
-
58
-
-
84940528665
-
Estimation of dynamic functional connectivity using Multiplication of Temporal Derivatives
-
Shine JM, Koyejo O, Bell PT, Gorgolewski KJ, Gilat M, Poldrack RA. 2015. Estimation of dynamic functional connectivity using Multiplication of Temporal Derivatives. NeuroImage 122:399-407. DOI: https://doi.org/10. 1016/j.neuroimage.2015.07.064
-
(2015)
NeuroImage
, vol.122
, pp. 399-407
-
-
Shine, J.M.1
Koyejo, O.2
Bell, P.T.3
Gorgolewski, K.J.4
Gilat, M.5
Poldrack, R.A.6
-
59
-
-
84984684847
-
Temporal metastates are associated with differential patterns of time- resolved connectivity, network topology, and attention
-
Shine JM, Koyejo O, Poldrack RA. 2016b. Temporal metastates are associated with differential patterns of time- resolved connectivity, network topology, and attention. PNAS 113:9888-9891. DOI: https://doi.org/10.1073/ pnas.1604898113
-
(2016)
PNAS
, vol.113
, pp. 9888-9891
-
-
Shine, J.M.1
Koyejo, O.2
Poldrack, R.A.3
-
60
-
-
85027182850
-
Principles of dynamic network reconfiguration across diverse brain states
-
Shine JM, Poldrack RA. 2017. Principles of dynamic network reconfiguration across diverse brain states. NeuroImage. DOI: https://doi.org/10.1016/j.neuroimage.2017.08.010
-
(2017)
NeuroImage
-
-
Shine, J.M.1
Poldrack, R.A.2
-
62
-
-
85043502104
-
-
eeed0a2. Github
-
Shine JM. 2018. Gain_topology. eeed0a2. Github. https://github.com/macshine/ gain_topology
-
(2018)
Gain_topology
-
-
Shine, J.M.1
-
63
-
-
75849145525
-
Phase-dependent neuronal coding of objects in short-term memory
-
Siegel M, Warden MR, Miller EK. 2009. Phase-dependent neuronal coding of objects in short-term memory. PNAS 106:21341-21346. DOI: https://doi.org/10.1073/pnas.0908193106
-
(2009)
PNAS
, vol.106
, pp. 21341-21346
-
-
Siegel, M.1
Warden, M.R.2
Miller, E.K.3
-
64
-
-
84880328906
-
The human connectome: Origins and challenges
-
Sporns O. 2013. The human connectome: origins and challenges. NeuroImage 80:53-61. DOI: https://doi.org/ 10.1016/j.neuroimage.2013.03.023
-
(2013)
NeuroImage
, vol.80
, pp. 53-61
-
-
Sporns, O.1
-
65
-
-
57149111292
-
A low dimensional description of globally coupled heterogeneous neural networks of excitatory and inhibitory neurons
-
Stefanescu RA, Jirsa VK. 2008. A low dimensional description of globally coupled heterogeneous neural networks of excitatory and inhibitory neurons. PLoS Computational Biology 4:e1000219. DOI: https://doi.org/ 10.1371/journal.pcbi.1000219
-
(2008)
PLoS Computational Biology
, vol.4
-
-
Stefanescu, R.A.1
Jirsa, V.K.2
-
66
-
-
79952524603
-
Reduced representations of heterogeneous mixed neural networks with synaptic coupling
-
Stefanescu RA, Jirsa VK. 2011. Reduced representations of heterogeneous mixed neural networks with synaptic coupling. Physical Review E 83:026204. DOI: https://doi.org/10.1103/PhysRevE.83.026204
-
(2011)
Physical Review E
, vol.83
, pp. 026204
-
-
Stefanescu, R.A.1
Jirsa, V.K.2
-
67
-
-
85006041163
-
Inhibitory control of correlated intrinsic variability in cortical networks
-
Stringer C, Pachitariu M, Steinmetz NA, Okun M, Bartho P, Harris KD, Sahani M, Lesica NA. 2016. Inhibitory control of correlated intrinsic variability in cortical networks. eLife 5:e19695. DOI: https://doi.org/10.7554/eLife. 19695
-
(2016)
eLife
, vol.5
-
-
Stringer, C.1
Pachitariu, M.2
Steinmetz, N.A.3
Okun, M.4
Bartho, P.5
Harris, K.D.6
Sahani, M.7
Lesica, N.A.8
-
68
-
-
0028245445
-
A measure for brain complexity: Relating functional segregation and integration in the nervous system
-
Tononi G, Sporns O, Edelman GM. 1994. A measure for brain complexity: relating functional segregation and integration in the nervous system. PNAS 91:5033-5037. DOI: https://doi.org/10.1073/pnas.91.11.5033
-
(1994)
PNAS
, vol.91
, pp. 5033-5037
-
-
Tononi, G.1
Sporns, O.2
Edelman, G.M.3
-
69
-
-
84883343021
-
An anatomical substrate for integration among functional networks in human cortex
-
van den Heuvel MP, Sporns O. 2013. An anatomical substrate for integration among functional networks in human cortex. Journal of Neuroscience 33:14489-14500. DOI: https://doi.org/10.1523/JNEUROSCI.2128-13. 2013
-
(2013)
Journal of Neuroscience
, vol.33
, pp. 14489-14500
-
-
van den Heuvel, M.P.1
Sporns, O.2
-
71
-
-
0024157855
-
New evidence for a gating action of norepinephrine in central neuronal circuits of mammalian brain
-
Waterhouse BD, Sessler FM, Cheng JT, Woodward DJ, Azizi SA, Moises HC, Jung-Tung C. 1988. New evidence for a gating action of norepinephrine in central neuronal circuits of mammalian brain. Brain Research Bulletin 21:425-432. DOI: https://doi.org/10.1016/0361-9230(88)90154-2
-
(1988)
Brain Research Bulletin
, vol.21
, pp. 425-432
-
-
Waterhouse, B.D.1
Sessler, F.M.2
Cheng, J.T.3
Woodward, D.J.4
Azizi, S.A.5
Moises, H.C.6
Jung-Tung, C.7
-
72
-
-
85016450130
-
Episodic memory retrieval benefits from a less modular brain network organization
-
Westphal AJ, Wang S, Rissman J. 2017. Episodic memory retrieval benefits from a less modular brain network organization. The Journal of Neuroscience 37:3523-3531. DOI: https://doi.org/10.1523/JNEUROSCI.2509-16. 2017
-
(2017)
The Journal of Neuroscience
, vol.37
, pp. 3523-3531
-
-
Westphal, A.J.1
Wang, S.2
Rissman, J.3
-
73
-
-
84880330489
-
Biophysical network models and the human connectome
-
Woolrich MW, Stephan KE. 2013. Biophysical network models and the human connectome. NeuroImage 80:330-338. DOI: https://doi.org/10.1016/j.neuroimage.2013.03.059
-
(2013)
NeuroImage
, vol.80
, pp. 330-338
-
-
Woolrich, M.W.1
Stephan, K.E.2
-
74
-
-
84904304174
-
Time-resolved resting-state brain networks
-
Zalesky A, Fornito A, Cocchi L, Gollo LL, Breakspear M. 2014. Time-resolved resting-state brain networks. PNAS 111:10341-10346. DOI: https://doi.org/10.1073/pnas.1400181111
-
(2014)
PNAS
, vol.111
, pp. 10341-10346
-
-
Zalesky, A.1
Fornito, A.2
Cocchi, L.3
Gollo, L.L.4
Breakspear, M.5
-
75
-
-
85001968672
-
Functional complexity emerging from anatomical constraints in the brain: The significance of network modularity and rich-clubs
-
Zamora-López G, Chen Y, Deco G, Kringelbach ML, Zhou C. 2016. Functional complexity emerging from anatomical constraints in the brain: the significance of network modularity and rich-clubs. Scientific Reports 6:38424. DOI: https://doi.org/10.1038/srep38424
-
(2016)
Scientific Reports
, vol.6
, pp. 38424
-
-
Zamora-López, G.1
Chen, Y.2
Deco, G.3
Kringelbach, M.L.4
Zhou, C.5
|