메뉴 건너뛰기




Volumn 7, Issue , 2018, Pages

The modulation of neural gain facilitates a transition between functional segregation and integration in the brain

Author keywords

[No Author keywords available]

Indexed keywords

ARTICLE; BRAIN; HUMAN; HUMAN EXPERIMENT; MODULATION; ARTIFICIAL NEURAL NETWORK; COGNITION; COMPUTER SIMULATION; NERVE CELL; NERVE CELL NETWORK; PHYSIOLOGY;

EID: 85043511735     PISSN: None     EISSN: 2050084X     Source Type: Journal    
DOI: 10.7554/eLife.31130     Document Type: Article
Times cited : (110)

References (75)
  • 1
    • 84872718164 scopus 로고    scopus 로고
    • Surprise maximization reveals the community structure of complex networks
    • Aldecoa R, Marín I. 2013. Surprise maximization reveals the community structure of complex networks. Scientific Reports 3:1060. DOI: https://doi.org/10.1038/srep01060
    • (2013) Scientific Reports , vol.3 , pp. 1060
    • Aldecoa, R.1    Marín, I.2
  • 2
    • 23244432007 scopus 로고    scopus 로고
    • An integrative theory of locus coeruleus-norepinephrine function: Adaptive gain and optimal performance
    • Aston-Jones G, Cohen JD. 2005. An integrative theory of locus coeruleus-norepinephrine function: adaptive gain and optimal performance. Annual Review of Neuroscience 28:403-450. DOI: https://doi.org/10.1146/annurev. neuro.28.061604.135709
    • (2005) Annual Review of Neuroscience , vol.28 , pp. 403-450
    • Aston-Jones, G.1    Cohen, J.D.2
  • 3
    • 84921415084 scopus 로고    scopus 로고
    • Signature of consciousness in the dynamics of resting-state brain activity
    • Barttfeld P, Uhrig L, Sitt JD, Sigman M, Jarraya B, Dehaene S. 2015. Signature of consciousness in the dynamics of resting-state brain activity. PNAS 112:887-892. DOI: https://doi.org/10.1073/pnas.1418031112
    • (2015) PNAS , vol.112 , pp. 887-892
    • Barttfeld, P.1    Uhrig, L.2    Sitt, J.D.3    Sigman, M.4    Jarraya, B.5    Dehaene, S.6
  • 4
    • 84928705434 scopus 로고    scopus 로고
    • Learning-induced autonomy of sensorimotor systems
    • Bassett DS, Yang M, Wymbs NF, Grafton ST. 2015. Learning-induced autonomy of sensorimotor systems. Nature Neuroscience 18:744-751. DOI: https://doi.org/10.1038/nn.3993
    • (2015) Nature Neuroscience , vol.18 , pp. 744-751
    • Bassett, D.S.1    Yang, M.2    Wymbs, N.F.3    Grafton, S.T.4
  • 6
    • 79952644099 scopus 로고    scopus 로고
    • Generative models of cortical oscillations: Neurobiological implications of the kuramoto model
    • Breakspear M, Heitmann S, Daffertshofer A. 2010. Generative models of cortical oscillations: neurobiological implications of the kuramoto model. Frontiers in Human Neuroscience 4:190. DOI: https://doi.org/10.3389/ fnhum.2010.00190
    • (2010) Frontiers in Human Neuroscience , vol.4 , pp. 190
    • Breakspear, M.1    Heitmann, S.2    Daffertshofer, A.3
  • 7
    • 85013766858 scopus 로고    scopus 로고
    • Dynamic models of large-scale brain activity
    • Breakspear M. 2017. Dynamic models of large-scale brain activity. Nature Neuroscience 20:340-352. DOI: https://doi.org/10.1038/nn.4497
    • (2017) Nature Neuroscience , vol.20 , pp. 340-352
    • Breakspear, M.1
  • 8
    • 84859948255 scopus 로고    scopus 로고
    • The economy of brain network organization
    • Bullmore E, Sporns O. 2012. The economy of brain network organization. Nature Reviews Neuroscience 13:336-349. DOI: https://doi.org/10.1038/nrn3214
    • (2012) Nature Reviews Neuroscience , vol.13 , pp. 336-349
    • Bullmore, E.1    Sporns, O.2
  • 9
    • 75249093217 scopus 로고    scopus 로고
    • Time-frequency dynamics of resting-state brain connectivity measured with fMRI
    • Chang C, Glover GH. 2010. Time-frequency dynamics of resting-state brain connectivity measured with fMRI. NeuroImage 50:81-98. DOI: https://doi.org/10.1016/j.neuroimage.2009.12.011
    • (2010) NeuroImage , vol.50 , pp. 81-98
    • Chang, C.1    Glover, G.H.2
  • 10
    • 77957565867 scopus 로고    scopus 로고
    • Emergent complex neural dynamics
    • Chialvo DR. 2010. Emergent complex neural dynamics. Nature Physics 6:744-750. DOI: https://doi.org/10.1038/ nphys1803
    • (2010) Nature Physics , vol.6 , pp. 744-750
    • Chialvo, D.R.1
  • 11
    • 85028500862 scopus 로고    scopus 로고
    • Criticality in the brain: A synthesis of neurobiology, models and cognition
    • Cocchi L, Gollo LL, Zalesky A, Breakspear M. 2017. Criticality in the brain: A synthesis of neurobiology, models and cognition. Progress in Neurobiology 158:132-152. DOI: https://doi.org/10.1016/j.pneurobio.2017.07.002
    • (2017) Progress in Neurobiology , vol.158 , pp. 132-152
    • Cocchi, L.1    Gollo, L.L.2    Zalesky, A.3    Breakspear, M.4
  • 12
    • 85006064044 scopus 로고    scopus 로고
    • The segregation and integration of distinct brain networks and their relationship to cognition
    • Cohen JR, D’Esposito M. 2016. The segregation and integration of distinct brain networks and their relationship to cognition. Journal of Neuroscience 36:12083-12094. DOI: https://doi.org/10.1523/JNEUROSCI.2965-15. 2016
    • (2016) Journal of Neuroscience , vol.36 , pp. 12083-12094
    • Cohen, J.R.1    D’Esposito, M.2
  • 13
    • 69449105310 scopus 로고    scopus 로고
    • A simple model of cortical dynamics explains variability and state dependence of sensory responses in urethane-anesthetized auditory cortex
    • Curto C, Sakata S, Marguet S, Itskov V, Harris KD. 2009. A simple model of cortical dynamics explains variability and state dependence of sensory responses in urethane-anesthetized auditory cortex. Journal of Neuroscience 29:10600-10612. DOI: https://doi.org/10.1523/JNEUROSCI.2053-09.2009
    • (2009) Journal of Neuroscience , vol.29 , pp. 10600-10612
    • Curto, C.1    Sakata, S.2    Marguet, S.3    Itskov, V.4    Harris, K.D.5
  • 14
    • 67649886440 scopus 로고    scopus 로고
    • Key role of coupling, delay, and noise in resting brain fluctuations
    • Deco G, Jirsa V, McIntosh AR, Sporns O, Kötter R. 2009. Key role of coupling, delay, and noise in resting brain fluctuations. PNAS 106:10302-10307. DOI: https://doi.org/10.1073/pnas.0901831106
    • (2009) PNAS , vol.106 , pp. 10302-10307
    • Deco, G.1    Jirsa, V.2    McIntosh, A.R.3    Sporns, O.4    Kötter, R.5
  • 15
    • 84877149884 scopus 로고    scopus 로고
    • Resting brains never rest: Computational insights into potential cognitive architectures
    • Deco G, Jirsa VK, McIntosh AR. 2013. Resting brains never rest: computational insights into potential cognitive architectures. Trends in Neurosciences 36:268-274. DOI: https://doi.org/10.1016/j.tins.2013.03.001
    • (2013) Trends in Neurosciences , vol.36 , pp. 268-274
    • Deco, G.1    Jirsa, V.K.2    McIntosh, A.R.3
  • 16
    • 84857802687 scopus 로고    scopus 로고
    • Ongoing cortical activity at rest: Criticality, multistability, and ghost attractors
    • Deco G, Jirsa VK. 2012. Ongoing cortical activity at rest: criticality, multistability, and ghost attractors. Journal of Neuroscience 32:3366-3375. DOI: https://doi.org/10.1523/JNEUROSCI.2523-11.2012
    • (2012) Journal of Neuroscience , vol.32 , pp. 3366-3375
    • Deco, G.1    Jirsa, V.K.2
  • 17
    • 85020425303 scopus 로고    scopus 로고
    • The dynamics of resting fluctuations in the brain: Metastability and its dynamical cortical core
    • Deco G, Kringelbach ML, Jirsa VK, Ritter P. 2017. The dynamics of resting fluctuations in the brain: metastability and its dynamical cortical core. Scientific Reports 7:3095. DOI: https://doi.org/10.1038/s41598-017-03073-5
    • (2017) Scientific Reports , vol.7 , pp. 3095
    • Deco, G.1    Kringelbach, M.L.2    Jirsa, V.K.3    Ritter, P.4
  • 18
    • 84932197976 scopus 로고    scopus 로고
    • Rethinking segregation and integration: Contributions of whole-brain modelling
    • Deco G, Tononi G, Boly M, Kringelbach ML. 2015a. Rethinking segregation and integration: contributions of whole-brain modelling. Nature Reviews Neuroscience 16:430-439. DOI: https://doi.org/10.1038/nrn3963
    • (2015) Nature Reviews Neuroscience , vol.16 , pp. 430-439
    • Deco, G.1    Tononi, G.2    Boly, M.3    Kringelbach, M.L.4
  • 19
    • 84932197976 scopus 로고    scopus 로고
    • Rethinking segregation and integration: Contributions of whole-brain modelling
    • Deco G, Tononi G, Boly M, Kringelbach ML. 2015b. Rethinking segregation and integration: contributions of whole-brain modelling. Nature Reviews Neuroscience 16:430-439. DOI: https://doi.org/10.1038/nrn3963
    • (2015) Nature Reviews Neuroscience , vol.16 , pp. 430-439
    • Deco, G.1    Tononi, G.2    Boly, M.3    Kringelbach, M.L.4
  • 20
    • 84880911656 scopus 로고    scopus 로고
    • The effects of neural gain on attention and learning
    • Eldar E, Cohen JD, Niv Y. 2013. The effects of neural gain on attention and learning. Nature Neuroscience 16:1146-1153. DOI: https://doi.org/10.1038/nn.3428
    • (2013) Nature Neuroscience , vol.16 , pp. 1146-1153
    • Eldar, E.1    Cohen, J.D.2    Niv, Y.3
  • 21
    • 40949124684 scopus 로고    scopus 로고
    • Communicability in complex networks
    • Estrada E, Hatano N. 2008. Communicability in complex networks. Physical Review E 77:036111. DOI: https:// doi.org/10.1103/PhysRevE.77.036111
    • (2008) Physical Review E , vol.77 , pp. 036111
    • Estrada, E.1    Hatano, N.2
  • 22
    • 53349102813 scopus 로고
    • Impulses and physiological states in theoretical models of nerve membrane
    • Fitzhugh R. 1961. Impulses and physiological states in theoretical models of nerve membrane. Biophysical Journal 1:445-466. DOI: https://doi.org/10.1016/S0006-3495(61)86902-6
    • (1961) Biophysical Journal , vol.1 , pp. 445-466
    • Fitzhugh, R.1
  • 24
    • 0018673582 scopus 로고
    • Nonlinear gain mediating cortical stimulus-response relations
    • Freeman WJ. 1979. Nonlinear gain mediating cortical stimulus-response relations. Biological Cybernetics 33:237-247. DOI: https://doi.org/10.1007/BF00337412
    • (1979) Biological Cybernetics , vol.33 , pp. 237-247
    • Freeman, W.J.1
  • 25
    • 25144464991 scopus 로고    scopus 로고
    • A mechanism for cognitive dynamics: Neuronal communication through neuronal coherence
    • Fries P. 2005. A mechanism for cognitive dynamics: neuronal communication through neuronal coherence. Trends in Cognitive Sciences 9:474-480. DOI: https://doi.org/10.1016/j.tics.2005.08.011
    • (2005) Trends in Cognitive Sciences , vol.9 , pp. 474-480
    • Fries, P.1
  • 26
    • 84943277272 scopus 로고    scopus 로고
    • Rhythms for Cognition: Communication through coherence
    • Fries P. 2015. Rhythms for Cognition: Communication through coherence. Neuron 88:220-235. DOI: https://doi. org/10.1016/j.neuron.2015.09.034
    • (2015) Neuron , vol.88 , pp. 220-235
    • Fries, P.1
  • 27
    • 0033778839 scopus 로고    scopus 로고
    • Nonlinear responses in fMRI: The Balloon model, Volterra kernels, and other hemodynamics
    • Friston KJ, Mechelli A, Turner R, Price CJ. 2000. Nonlinear responses in fMRI: the Balloon model, Volterra kernels, and other hemodynamics. NeuroImage 12:466-477. DOI: https://doi.org/10.1006/nimg.2000.0630
    • (2000) NeuroImage , vol.12 , pp. 466-477
    • Friston, K.J.1    Mechelli, A.2    Turner, R.3    Price, C.J.4
  • 28
    • 55449107481 scopus 로고    scopus 로고
    • Noise during rest enables the exploration of the brain’s dynamic repertoire
    • Ghosh A, Rho Y, McIntosh AR, Kötter R, Jirsa VK. 2008. Noise during rest enables the exploration of the brain’s dynamic repertoire. PLoS Computational Biology 4:e1000196. DOI: https://doi.org/10.1371/journal.pcbi. 1000196
    • (2008) PLoS Computational Biology , vol.4
    • Ghosh, A.1    Rho, Y.2    McIntosh, A.R.3    Kötter, R.4    Jirsa, V.K.5
  • 29
    • 84925597534 scopus 로고    scopus 로고
    • Breakdown of the brain’s functional network modularity with awareness
    • Godwin D, Barry RL, Marois R. 2015. Breakdown of the brain’s functional network modularity with awareness. PNAS 112:3799-3804. DOI: https://doi.org/10.1073/pnas.1414466112
    • (2015) PNAS , vol.112 , pp. 3799-3804
    • Godwin, D.1    Barry, R.L.2    Marois, R.3
  • 31
    • 85028651187 scopus 로고    scopus 로고
    • Reconfiguration of Brain Network Architectures between Resting-State and Complexity-Dependent Cognitive Reasoning
    • Hearne LJ, Cocchi L, Zalesky A, Mattingley JB. 2017. Reconfiguration of Brain Network Architectures between Resting-State and Complexity-Dependent Cognitive Reasoning. The Journal of Neuroscience 37:0485-17-0488411. DOI: https://doi.org/10.1523/JNEUROSCI.0485-17.2017
    • (2017) The Journal of Neuroscience , vol.37
    • Hearne, L.J.1    Cocchi, L.2    Zalesky, A.3    Mattingley, J.B.4
  • 33
    • 34547219105 scopus 로고    scopus 로고
    • Network structure of cerebral cortex shapes functional connectivity on multiple time scales
    • Honey CJ, Kötter R, Breakspear M, Sporns O. 2007. Network structure of cerebral cortex shapes functional connectivity on multiple time scales. PNAS 104:10240-10245. DOI: https://doi.org/10.1073/pnas.0701519104
    • (2007) PNAS , vol.104 , pp. 10240-10245
    • Honey, C.J.1    Kötter, R.2    Breakspear, M.3    Sporns, O.4
  • 34
    • 60549089357 scopus 로고    scopus 로고
    • Predicting human resting- state functional connectivity from structural connectivity
    • Honey CJ, Sporns O, Cammoun L, Gigandet X, Thiran JP, Meuli R, Hagmann P. 2009. Predicting human resting- state functional connectivity from structural connectivity. PNAS 106:2035-2040. DOI: https://doi.org/10.1073/ pnas.0811168106
    • (2009) PNAS , vol.106 , pp. 2035-2040
    • Honey, C.J.1    Sporns, O.2    Cammoun, L.3    Gigandet, X.4    Thiran, J.P.5    Meuli, R.6    Hagmann, P.7
  • 36
    • 85020392776 scopus 로고    scopus 로고
    • The human thalamus is an integrative Hub for functional brain networks
    • Hwang K, Bertolero MA, Liu WB, D’Esposito M. 2017. The human thalamus is an integrative Hub for functional brain networks. The Journal of Neuroscience 37:5594-5607. DOI: https://doi.org/10.1523/JNEUROSCI.0067-17.2017
    • (2017) The Journal of Neuroscience , vol.37 , pp. 5594-5607
    • Hwang, K.1    Bertolero, M.A.2    Liu, W.B.3    D’Esposito, M.4
  • 37
    • 72149105121 scopus 로고    scopus 로고
    • FitzHugh-Nagumo model
    • Izhikevich E, FitzHugh R. 2006. FitzHugh-Nagumo model. Scholarpedia 1:1349. DOI: https://doi.org/10.4249/ scholarpedia.1349
    • (2006) Scholarpedia , vol.1 , pp. 1349
    • Izhikevich, E.1    FitzHugh, R.2
  • 39
    • 84953715312 scopus 로고    scopus 로고
    • Relationships between Pupil Diameter and Neuronal Activity in the Locus Coeruleus, Colliculi, and Cingulate Cortex
    • Joshi S, Li Y, Kalwani RM, Gold JI. 2016. Relationships between Pupil Diameter and Neuronal Activity in the Locus Coeruleus, Colliculi, and Cingulate Cortex. Neuron 89:221-234. DOI: https://doi.org/10.1016/j.neuron. 2015.11.028
    • (2016) Neuron , vol.89 , pp. 221-234
    • Joshi, S.1    Li, Y.2    Kalwani, R.M.3    Gold, J.I.4
  • 41
    • 6344245918 scopus 로고    scopus 로고
    • Online retrieval, processing, and visualization of primate connectivity data from the CoCoMac database
    • Kötter R. 2004. Online retrieval, processing, and visualization of primate connectivity data from the CoCoMac database. Neuroinformatics 2:127-144. DOI: https://doi.org/10.1385/NI:2:2:127
    • (2004) Neuroinformatics , vol.2 , pp. 127-144
    • Kötter, R.1
  • 42
    • 84875515072 scopus 로고    scopus 로고
    • The q-g neural code
    • Lisman JE, Jensen O. 2013. The q-g neural code. Neuron 77:1002-1016. DOI: https://doi.org/10.1016/j.neuron. 2013.03.007
    • (2013) Neuron , vol.77 , pp. 1002-1016
    • Lisman, J.E.1    Jensen, O.2
  • 45
    • 84887291519 scopus 로고    scopus 로고
    • Structural and functional brain networks: From connections to cognition
    • Park HJ, Friston K. 2013. Structural and functional brain networks: from connections to cognition. Science 342:1238411. DOI: https://doi.org/10.1126/science.1238411
    • (2013) Science , vol.342 , pp. 1238411
    • Park, H.J.1    Friston, K.2
  • 46
    • 84908241101 scopus 로고    scopus 로고
    • Pupil fluctuations track fast switching of cortical states during quiet wakefulness
    • Reimer J, Froudarakis E, Cadwell CR, Yatsenko D, Denfield GH, Tolias AS. 2014. Pupil fluctuations track fast switching of cortical states during quiet wakefulness. Neuron 84:355-362. DOI: https://doi.org/10.1016/j. neuron.2014.09.033
    • (2014) Neuron , vol.84 , pp. 355-362
    • Reimer, J.1    Froudarakis, E.2    Cadwell, C.R.3    Yatsenko, D.4    Denfield, G.H.5    Tolias, A.S.6
  • 48
    • 67651021134 scopus 로고    scopus 로고
    • The neuropsychopharmacology of fronto-executive function: Monoaminergic modulation
    • Robbins TW, Arnsten AF. 2009. The neuropsychopharmacology of fronto-executive function: monoaminergic modulation. Annual Review of Neuroscience 32:267-287. DOI: https://doi.org/10.1146/annurev.neuro.051508. 135535
    • (2009) Annual Review of Neuroscience , vol.32 , pp. 267-287
    • Robbins, T.W.1    Arnsten, A.F.2
  • 50
    • 85027956585 scopus 로고    scopus 로고
    • Consistency-based thresholding of the human connectome
    • Roberts JA, Perry A, Roberts G, Mitchell PB, Breakspear M. 2017. Consistency-based thresholding of the human connectome. NeuroImage 145:118-129. DOI: https://doi.org/10.1016/j.neuroimage.2016.09.053
    • (2017) NeuroImage , vol.145 , pp. 118-129
    • Roberts, J.A.1    Perry, A.2    Roberts, G.3    Mitchell, P.B.4    Breakspear, M.5
  • 51
    • 77954385460 scopus 로고    scopus 로고
    • Complex network measures of brain connectivity: Uses and interpretations
    • Rubinov M, Sporns O. 2010. Complex network measures of brain connectivity: uses and interpretations. NeuroImage 52:1059-1069. DOI: https://doi.org/10.1016/j.neuroimage.2009.10.003
    • (2010) NeuroImage , vol.52 , pp. 1059-1069
    • Rubinov, M.1    Sporns, O.2
  • 52
    • 0001040012 scopus 로고
    • Numerical Treatment of Stochastic Differential Equations
    • Rüemelin W. 1982. Numerical Treatment of Stochastic Differential Equations. SIAM Journal on Numerical Analysis 19:604-613. DOI: https://doi.org/10.1137/0719041
    • (1982) SIAM Journal on Numerical Analysis , vol.19 , pp. 604-613
    • Rüemelin, W.1
  • 53
    • 84944255814 scopus 로고    scopus 로고
    • Modeling the effect of locus coeruleus firing on cortical state dynamics and single-trial sensory processing
    • Safaai H, Neves R, Eschenko O, Logothetis NK, Panzeri S. 2015. Modeling the effect of locus coeruleus firing on cortical state dynamics and single-trial sensory processing. PNAS 112:12834-12839. DOI: https://doi.org/10. 1073/pnas.1516539112
    • (2015) PNAS , vol.112 , pp. 12834-12839
    • Safaai, H.1    Neves, R.2    Eschenko, O.3    Logothetis, N.K.4    Panzeri, S.5
  • 55
    • 60549092240 scopus 로고    scopus 로고
    • The locus coeruleus and noradrenergic modulation of cognition
    • Sara SJ. 2009. The locus coeruleus and noradrenergic modulation of cognition. Nature Reviews Neuroscience 10:211-223. DOI: https://doi.org/10.1038/nrn2573
    • (2009) Nature Reviews Neuroscience , vol.10 , pp. 211-223
    • Sara, S.J.1
  • 56
    • 0025118803 scopus 로고
    • A network model of catecholamine effects: Gain, signal-to-noise ratio, and behavior
    • Servan-Schreiber D, Printz H, Cohen JD. 1990. A network model of catecholamine effects: gain, signal-to-noise ratio, and behavior. Science 249:892-895. DOI: https://doi.org/10.1126/science.2392679
    • (1990) Science , vol.249 , pp. 892-895
    • Servan-Schreiber, D.1    Printz, H.2    Cohen, J.D.3
  • 57
    • 84992378782 scopus 로고    scopus 로고
    • The dynamics of functional brain networks: Integrated network states during cognitive task performance
    • Shine JM, Bissett PG, Bell PT, Koyejo O, Balsters JH, Gorgolewski KJ, Moodie CA, Poldrack RA. 2016a. The dynamics of functional brain networks: integrated network states during cognitive task performance. Neuron 92:544-554. DOI: https://doi.org/10.1016/j.neuron.2016.09.018
    • (2016) Neuron , vol.92 , pp. 544-554
    • Shine, J.M.1    Bissett, P.G.2    Bell, P.T.3    Koyejo, O.4    Balsters, J.H.5    Gorgolewski, K.J.6    Moodie, C.A.7    Poldrack, R.A.8
  • 58
    • 84940528665 scopus 로고    scopus 로고
    • Estimation of dynamic functional connectivity using Multiplication of Temporal Derivatives
    • Shine JM, Koyejo O, Bell PT, Gorgolewski KJ, Gilat M, Poldrack RA. 2015. Estimation of dynamic functional connectivity using Multiplication of Temporal Derivatives. NeuroImage 122:399-407. DOI: https://doi.org/10. 1016/j.neuroimage.2015.07.064
    • (2015) NeuroImage , vol.122 , pp. 399-407
    • Shine, J.M.1    Koyejo, O.2    Bell, P.T.3    Gorgolewski, K.J.4    Gilat, M.5    Poldrack, R.A.6
  • 59
    • 84984684847 scopus 로고    scopus 로고
    • Temporal metastates are associated with differential patterns of time- resolved connectivity, network topology, and attention
    • Shine JM, Koyejo O, Poldrack RA. 2016b. Temporal metastates are associated with differential patterns of time- resolved connectivity, network topology, and attention. PNAS 113:9888-9891. DOI: https://doi.org/10.1073/ pnas.1604898113
    • (2016) PNAS , vol.113 , pp. 9888-9891
    • Shine, J.M.1    Koyejo, O.2    Poldrack, R.A.3
  • 60
    • 85027182850 scopus 로고    scopus 로고
    • Principles of dynamic network reconfiguration across diverse brain states
    • Shine JM, Poldrack RA. 2017. Principles of dynamic network reconfiguration across diverse brain states. NeuroImage. DOI: https://doi.org/10.1016/j.neuroimage.2017.08.010
    • (2017) NeuroImage
    • Shine, J.M.1    Poldrack, R.A.2
  • 62
    • 85043502104 scopus 로고    scopus 로고
    • eeed0a2. Github
    • Shine JM. 2018. Gain_topology. eeed0a2. Github. https://github.com/macshine/ gain_topology
    • (2018) Gain_topology
    • Shine, J.M.1
  • 63
    • 75849145525 scopus 로고    scopus 로고
    • Phase-dependent neuronal coding of objects in short-term memory
    • Siegel M, Warden MR, Miller EK. 2009. Phase-dependent neuronal coding of objects in short-term memory. PNAS 106:21341-21346. DOI: https://doi.org/10.1073/pnas.0908193106
    • (2009) PNAS , vol.106 , pp. 21341-21346
    • Siegel, M.1    Warden, M.R.2    Miller, E.K.3
  • 64
    • 84880328906 scopus 로고    scopus 로고
    • The human connectome: Origins and challenges
    • Sporns O. 2013. The human connectome: origins and challenges. NeuroImage 80:53-61. DOI: https://doi.org/ 10.1016/j.neuroimage.2013.03.023
    • (2013) NeuroImage , vol.80 , pp. 53-61
    • Sporns, O.1
  • 65
    • 57149111292 scopus 로고    scopus 로고
    • A low dimensional description of globally coupled heterogeneous neural networks of excitatory and inhibitory neurons
    • Stefanescu RA, Jirsa VK. 2008. A low dimensional description of globally coupled heterogeneous neural networks of excitatory and inhibitory neurons. PLoS Computational Biology 4:e1000219. DOI: https://doi.org/ 10.1371/journal.pcbi.1000219
    • (2008) PLoS Computational Biology , vol.4
    • Stefanescu, R.A.1    Jirsa, V.K.2
  • 66
    • 79952524603 scopus 로고    scopus 로고
    • Reduced representations of heterogeneous mixed neural networks with synaptic coupling
    • Stefanescu RA, Jirsa VK. 2011. Reduced representations of heterogeneous mixed neural networks with synaptic coupling. Physical Review E 83:026204. DOI: https://doi.org/10.1103/PhysRevE.83.026204
    • (2011) Physical Review E , vol.83 , pp. 026204
    • Stefanescu, R.A.1    Jirsa, V.K.2
  • 68
    • 0028245445 scopus 로고
    • A measure for brain complexity: Relating functional segregation and integration in the nervous system
    • Tononi G, Sporns O, Edelman GM. 1994. A measure for brain complexity: relating functional segregation and integration in the nervous system. PNAS 91:5033-5037. DOI: https://doi.org/10.1073/pnas.91.11.5033
    • (1994) PNAS , vol.91 , pp. 5033-5037
    • Tononi, G.1    Sporns, O.2    Edelman, G.M.3
  • 69
    • 84883343021 scopus 로고    scopus 로고
    • An anatomical substrate for integration among functional networks in human cortex
    • van den Heuvel MP, Sporns O. 2013. An anatomical substrate for integration among functional networks in human cortex. Journal of Neuroscience 33:14489-14500. DOI: https://doi.org/10.1523/JNEUROSCI.2128-13. 2013
    • (2013) Journal of Neuroscience , vol.33 , pp. 14489-14500
    • van den Heuvel, M.P.1    Sporns, O.2
  • 72
    • 85016450130 scopus 로고    scopus 로고
    • Episodic memory retrieval benefits from a less modular brain network organization
    • Westphal AJ, Wang S, Rissman J. 2017. Episodic memory retrieval benefits from a less modular brain network organization. The Journal of Neuroscience 37:3523-3531. DOI: https://doi.org/10.1523/JNEUROSCI.2509-16. 2017
    • (2017) The Journal of Neuroscience , vol.37 , pp. 3523-3531
    • Westphal, A.J.1    Wang, S.2    Rissman, J.3
  • 73
    • 84880330489 scopus 로고    scopus 로고
    • Biophysical network models and the human connectome
    • Woolrich MW, Stephan KE. 2013. Biophysical network models and the human connectome. NeuroImage 80:330-338. DOI: https://doi.org/10.1016/j.neuroimage.2013.03.059
    • (2013) NeuroImage , vol.80 , pp. 330-338
    • Woolrich, M.W.1    Stephan, K.E.2
  • 74
    • 84904304174 scopus 로고    scopus 로고
    • Time-resolved resting-state brain networks
    • Zalesky A, Fornito A, Cocchi L, Gollo LL, Breakspear M. 2014. Time-resolved resting-state brain networks. PNAS 111:10341-10346. DOI: https://doi.org/10.1073/pnas.1400181111
    • (2014) PNAS , vol.111 , pp. 10341-10346
    • Zalesky, A.1    Fornito, A.2    Cocchi, L.3    Gollo, L.L.4    Breakspear, M.5
  • 75
    • 85001968672 scopus 로고    scopus 로고
    • Functional complexity emerging from anatomical constraints in the brain: The significance of network modularity and rich-clubs
    • Zamora-López G, Chen Y, Deco G, Kringelbach ML, Zhou C. 2016. Functional complexity emerging from anatomical constraints in the brain: the significance of network modularity and rich-clubs. Scientific Reports 6:38424. DOI: https://doi.org/10.1038/srep38424
    • (2016) Scientific Reports , vol.6 , pp. 38424
    • Zamora-López, G.1    Chen, Y.2    Deco, G.3    Kringelbach, M.L.4    Zhou, C.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.