메뉴 건너뛰기




Volumn 2017-October, Issue , 2017, Pages 1453-1461

Adaptive RNN Tree for Large-Scale Human Action Recognition

Author keywords

[No Author keywords available]

Indexed keywords

COMPUTER VISION; RECURRENT NEURAL NETWORKS;

EID: 85041931342     PISSN: 15505499     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/ICCV.2017.161     Document Type: Conference Paper
Times cited : (121)

References (37)
  • 1
    • 84906782091 scopus 로고    scopus 로고
    • Human activity recognition from 3D data: A review
    • J. K. Aggarwal and L. Xia. Human activity recognition from 3D data: A review. PR Letters, 48:70-80, 2014
    • (2014) PR Letters , vol.48 , pp. 70-80
    • Aggarwal, J.K.1    Xia, L.2
  • 2
    • 79551528802 scopus 로고    scopus 로고
    • Parallel spectral clustering in distributed systems
    • W. Chen, Y. Song, H. Bai, C. Lin, and E. Y. Chang. Parallel spectral clustering in distributed systems. TPAMI, 33(3):568-586, 2011
    • (2011) TPAMI , vol.33 , Issue.3 , pp. 568-586
    • Chen, W.1    Song, Y.2    Bai, H.3    Lin, C.4    Chang, E.Y.5
  • 4
    • 84977506318 scopus 로고    scopus 로고
    • Online deformable object tracking based on structure-aware hypergraph
    • D. Du, H. Qi, W. Li, L. Wen, Q. Huang, and S. Lyu. Online deformable object tracking based on structure-aware hypergraph. TIP, 25(8):3572-3584, 2016
    • (2016) TIP , vol.25 , Issue.8 , pp. 3572-3584
    • Du, D.1    Qi, H.2    Li, W.3    Wen, L.4    Huang, Q.5    Lyu, S.6
  • 5
    • 84959217041 scopus 로고    scopus 로고
    • Hierarchical recurrent neural network for skeleton based action recognition
    • Y. Du, W. Wang, and L. Wang. Hierarchical recurrent neural network for skeleton based action recognition. In CVPR, pages 1110-1118, 2015
    • (2015) CVPR , pp. 1110-1118
    • Du, Y.1    Wang, W.2    Wang, L.3
  • 7
    • 84862069071 scopus 로고    scopus 로고
    • Instructing people for training gestural interactive systems
    • S. Fothergill, H. M. Mentis, P. Kohli, and S. Nowozin. Instructing people for training gestural interactive systems. In CHI, pages 1737-1746, 2012
    • (2012) CHI , pp. 1737-1746
    • Fothergill, S.1    Mentis, H.M.2    Kohli, P.3    Nowozin, S.4
  • 8
    • 84896063976 scopus 로고    scopus 로고
    • Histogram of oriented displacements (HOD): Describing trajectories of human joints for action recognition
    • M. A. Gowayyed, M. Torki, M. E. Hussein, and M. El-Saban. Histogram of oriented displacements (HOD): describing trajectories of human joints for action recognition. In IJCAI, pages 1351-1357, 2013
    • (2013) IJCAI , pp. 1351-1357
    • Gowayyed, M.A.1    Torki, M.2    Hussein, M.E.3    El-Saban, M.4
  • 11
    • 0000370416 scopus 로고    scopus 로고
    • LSTM can solve hard long time lag problems
    • S. Hochreiter and J. Schmidhuber. LSTM can solve hard long time lag problems. In ACCV, pages 473-479, 1996
    • (1996) ACCV , pp. 473-479
    • Hochreiter, S.1    Schmidhuber, J.2
  • 12
    • 84942525698 scopus 로고    scopus 로고
    • EMOD: An efficient on-device mobile visual search system
    • D. Li and M. C. Chuah. EMOD: An efficient on-device mobile visual search system. In ACM MMSys, pages 25-36, 2015
    • (2015) ACM MMSys , pp. 25-36
    • Li, D.1    Chuah, M.C.2
  • 13
    • 85010748102 scopus 로고    scopus 로고
    • Deepcham: Collaborative edge-mediated adaptive deep learning for mobile object recognition
    • D. Li, T. Salonidis, N. V. Desai, and M. C. Chuah. Deepcham: Collaborative edge-mediated adaptive deep learning for mobile object recognition. In SEC, pages 64-76, 2016
    • (2016) SEC , pp. 64-76
    • Li, D.1    Salonidis, T.2    Desai, N.V.3    Chuah, M.C.4
  • 14
    • 84973860944 scopus 로고    scopus 로고
    • Category-blind human action recognition: A practical recognition system
    • W. Li, L. Wen, M. C. Chuah, and S. Lyu. Category-blind human action recognition: A practical recognition system. In ICCV, pages 4444-4452, 2015
    • (2015) ICCV , pp. 4444-4452
    • Li, W.1    Wen, L.2    Chuah, M.C.3    Lyu, S.4
  • 15
    • 84925412434 scopus 로고    scopus 로고
    • Online visual tracking using temporally coherent part cluster
    • W. Li, L. Wen, M. C. Chuah, Y. Zhang, Z. Lei, and S. Z. Li. Online visual tracking using temporally coherent part cluster. In WACV, pages 9-16, 2015
    • (2015) WACV , pp. 9-16
    • Li, W.1    Wen, L.2    Chuah, M.C.3    Zhang, Y.4    Lei, Z.5    Li, S.Z.6
  • 16
    • 77956552331 scopus 로고    scopus 로고
    • Action recognition based on a bag of 3D points
    • W. Li, Z. Zhang, and Z. Liu. Action recognition based on a bag of 3D points. In CVPRW, pages 9-14, 2010
    • (2010) CVPRW , pp. 9-14
    • Li, W.1    Zhang, Z.2    Liu, Z.3
  • 17
    • 85030235359 scopus 로고    scopus 로고
    • Spatio-temporal lstm with trust gates for 3D human action recognition
    • J. Liu, A. Shahroudy, D. Xu, and G. Wang. Spatio-temporal lstm with trust gates for 3D human action recognition. In ECCV, pages 1-8, 2016
    • (2016) ECCV , pp. 1-8
    • Liu, J.1    Shahroudy, A.2    Xu, D.3    Wang, G.4
  • 19
    • 84901375492 scopus 로고    scopus 로고
    • Kintense: A robust, accurate, real-time and evolving system for detecting aggressive actions from streaming 3D skeleton data
    • S. M. S. Nirjon, C. Greenwood, C. Torres, S. Zhou, J. A. Stankovic, H. Yoon, H. Ra, C. Basaran, T. Park, and S. H. Son. Kintense: A robust, accurate, real-time and evolving system for detecting aggressive actions from streaming 3D skeleton data. In PerCom, pages 2-10, 2014
    • (2014) PerCom , pp. 2-10
    • Nirjon, S.M.S.1    Greenwood, C.2    Torres, C.3    Zhou, S.4    Stankovic, J.A.5    Yoon, H.6    Ra, H.7    Basaran, C.8    Park, T.9    Son, S.H.10
  • 20
    • 84875595728 scopus 로고    scopus 로고
    • Berkeley MHAD: A comprehensive multimodal human action database
    • F. Ofli, R. Chaudhry, G. Kurillo, R. Vidal, and R. Bajcsy. Berkeley MHAD: A comprehensive multimodal human action database. In WACV, pages 53-60, 2013
    • (2013) WACV , pp. 53-60
    • Ofli, F.1    Chaudhry, R.2    Kurillo, G.3    Vidal, R.4    Bajcsy, R.5
  • 21
    • 33744584654 scopus 로고
    • Induction of decision trees
    • J. R. Quinlan. Induction of decision trees. Machine Learning, 1(1):81-106, 1986
    • (1986) Machine Learning , vol.1 , Issue.1 , pp. 81-106
    • Quinlan, J.R.1
  • 22
    • 77953224502 scopus 로고    scopus 로고
    • Incremental action recognition using feature-tree
    • K. K. Reddy, J. Liu, and M. Shah. Incremental action recognition using feature-tree. In ICCV, pages 1010-1017, 2009
    • (2009) ICCV , pp. 1010-1017
    • Reddy, K.K.1    Liu, J.2    Shah, M.3
  • 23
    • 84986252370 scopus 로고    scopus 로고
    • NTU RGB+D: A large scale dataset for 3D human activity analysis
    • A. Shahroudy, J. Liu, T. Ng, and G. Wang. NTU RGB+D: A large scale dataset for 3D human activity analysis. In CVPR, pages 1010-1019, 2016
    • (2016) CVPR , pp. 1010-1019
    • Shahroudy, A.1    Liu, J.2    Ng, T.3    Wang, G.4
  • 25
    • 85030214213 scopus 로고    scopus 로고
    • An end-to-end spatio-temporal attention model for human action recognition from skeleton data
    • S. Song, C. Lan, J. Xing,W. Zeng, and J. Liu. An end-to-end spatio-temporal attention model for human action recognition from skeleton data. In AAAI, pages 4263-4270, 2017
    • (2017) AAAI , pp. 4263-4270
    • Song, S.1    Lan, C.2    Xing, J.3    Zeng, W.4    Liu, J.5
  • 26
    • 84973920651 scopus 로고    scopus 로고
    • Differential recurrent neural networks for action recognition
    • V. Veeriah, N. Zhuang, and G. Qi. Differential recurrent neural networks for action recognition. In ICCV, pages 4041-4049, 2015
    • (2015) ICCV , pp. 4041-4049
    • Veeriah, V.1    Zhuang, N.2    Qi, G.3
  • 27
    • 84911376484 scopus 로고    scopus 로고
    • Human action recognition by representing 3D skeletons as points in a Lie group
    • R. Vemulapalli, F. Arrate, and R. Chellappa. Human action recognition by representing 3D skeletons as points in a Lie group. In CVPR, pages 588-595, 2014
    • (2014) CVPR , pp. 588-595
    • Vemulapalli, R.1    Arrate, F.2    Chellappa, R.3
  • 28
    • 84986271081 scopus 로고    scopus 로고
    • Rolling rotations for recognizing human actions from 3D skeletal data
    • R. Vemulapalli and R. Chellappa. Rolling rotations for recognizing human actions from 3D skeletal data. In CVPR, pages 4471-4479, 2016
    • (2016) CVPR , pp. 4471-4479
    • Vemulapalli, R.1    Chellappa, R.2
  • 29
    • 84866672692 scopus 로고    scopus 로고
    • Mining actionlet ensemble for action recognition with depth cameras
    • J. Wang, Z. Liu, Y. Wu, and J. Yuan. Mining actionlet ensemble for action recognition with depth cameras. In CVPR, pages 1290-1297, 2012
    • (2012) CVPR , pp. 1290-1297
    • Wang, J.1    Liu, Z.2    Wu, Y.3    Yuan, J.4
  • 30
    • 84911442295 scopus 로고    scopus 로고
    • Multiple target tracking based on undirected hierarchical relation hypergraph
    • L. Wen, W. Li, J. Yan, Z. Lei, D. Yi, and S. Z. Li. Multiple target tracking based on undirected hierarchical relation hypergraph. In CVPR, pages 1282-1289, 2014
    • (2014) CVPR , pp. 1282-1289
    • Wen, L.1    Li, W.2    Yan, J.3    Lei, Z.4    Yi, D.5    Li, S.Z.6
  • 31
    • 84911438024 scopus 로고    scopus 로고
    • Leveraging hierarchical parametric networks for skeletal joints based action segmentation and recognition
    • D. Wu and L. Shao. Leveraging hierarchical parametric networks for skeletal joints based action segmentation and recognition. In CVPR, pages 724-731, 2014
    • (2014) CVPR , pp. 724-731
    • Wu, D.1    Shao, L.2
  • 32
    • 84865033379 scopus 로고    scopus 로고
    • View invariant human action recognition using histograms of 3D joints
    • L. Xia, C. Chen, and J. K. Aggarwal. View invariant human action recognition using histograms of 3D joints. In CVPRW, pages 20-27, 2012
    • (2012) CVPRW , pp. 20-27
    • Xia, L.1    Chen, C.2    Aggarwal, J.K.3
  • 33
    • 84996868121 scopus 로고    scopus 로고
    • POI: Multiple object tracking with high performance detection and appearance feature
    • F. Yu, W. Li, Q. Li, Y. Liu, X. Shi, and J. Yan. POI: multiple object tracking with high performance detection and appearance feature. In ECCVW, pages 36-42, 2016
    • (2016) ECCVW , pp. 36-42
    • Yu, F.1    Li, W.2    Li, Q.3    Liu, Y.4    Shi, X.5    Yan, J.6
  • 34
    • 84929626784 scopus 로고    scopus 로고
    • Discriminative orderlet mining for real-time recognition of human-object interaction
    • G. Yu, Z. Liu, and J. Yuan. Discriminative orderlet mining for real-time recognition of human-object interaction. In ACCV, pages 50-65, 2014
    • (2014) ACCV , pp. 50-65
    • Yu, G.1    Liu, Z.2    Yuan, J.3
  • 35
    • 84898773205 scopus 로고    scopus 로고
    • The moving pose: An efficient 3D kinematics descriptor for low-latency action recognition and detection
    • M. Zanfir, M. Leordeanu, and C. Sminchisescu. The moving pose: An efficient 3D kinematics descriptor for low-latency action recognition and detection. In ICCV, pages 2752-2759, 2013
    • (2013) ICCV , pp. 2752-2759
    • Zanfir, M.1    Leordeanu, M.2    Sminchisescu, C.3
  • 36
    • 84887427943 scopus 로고    scopus 로고
    • Online human gesture recognition from motion data streams
    • X. Zhao, X. Li, C. Pang, X. Zhu, and Q. Z. Sheng. Online human gesture recognition from motion data streams. In ACM MM, pages 23-32, 2013
    • (2013) ACM MM , pp. 23-32
    • Zhao, X.1    Li, X.2    Pang, C.3    Zhu, X.4    Sheng, Q.Z.5
  • 37
    • 85007199276 scopus 로고    scopus 로고
    • Co-occurrence feature learning for skeleton based action recognition using regularized deep LSTM networks
    • W. Zhu, C. Lan, J. Xing, W. Zeng, Y. Li, L. Shen, and X. Xie. Co-occurrence feature learning for skeleton based action recognition using regularized deep LSTM networks. In AAAI, pages 3697-3704, 2016.
    • (2016) AAAI , pp. 3697-3704
    • Zhu, W.1    Lan, C.2    Xing, J.3    Zeng, W.4    Li, Y.5    Shen, L.6    Xie, X.7


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.