-
2
-
-
79953048649
-
Contour detection and hierarchical image segmentation
-
P. Arbelaez, M. Maire, C. Fowlkes, and J. Malik. Contour detection and hierarchical image segmentation. IEEE Trans. Patt. Anal. Mach. Intell., 33 (5):898-916, 2011.
-
(2011)
IEEE Trans. Patt. Anal. Mach. Intell.
, vol.33
, Issue.5
, pp. 898-916
-
-
Arbelaez, P.1
Maire, M.2
Fowlkes, C.3
Malik, J.4
-
3
-
-
84948763339
-
Crowdsourcing the creation of image segmentation algorithms for connectomics
-
I. Arganda-Carreras, S. Turaga, D. Berger, et al. Crowdsourcing the creation of image segmentation algorithms for connectomics. Front. Neuroanatomy, 9:142, 2015.
-
(2015)
Front. Neuroanatomy
, vol.9
, pp. 142
-
-
Arganda-Carreras, I.1
Turaga, S.2
Berger, D.3
-
5
-
-
85011370891
-
Multicut brings automated neurite segmentation closer to human performance
-
T. Beier, C. Pape, N. Rahaman, T. Prange, et al. Multicut brings automated neurite segmentation closer to human performance. Nature Methods, 14 (2):101-102, 2017.
-
(2017)
Nature Methods
, vol.14
, Issue.2
, pp. 101-102
-
-
Beier, T.1
Pape, C.2
Rahaman, N.3
Prange, T.4
-
6
-
-
85041901637
-
Pancreas segmentation in MRI using graph-based decision fusion on convolutional neural networks
-
J. Cai, L. Lu, Z. Zhang, F. Xing, L. Yang, and Q. Yin. Pancreas segmentation in MRI using graph-based decision fusion on convolutional neural networks. In Proc. MICCAI, 2016.
-
(2016)
Proc. MICCAI
-
-
Cai, J.1
Lu, L.2
Zhang, Z.3
Xing, F.4
Yang, L.5
Yin, Q.6
-
8
-
-
79957531266
-
Power watershed: A unifying graph-based optimization framework
-
C. Couprie, L. Grady, L. Najman, and H. Talbot. Power watershed: A unifying graph-based optimization framework. IEEE Trans. Patt. Anal. Mach. Intell., 33 (7), 2011.
-
(2011)
IEEE Trans. Patt. Anal. Mach. Intell.
, vol.33
, Issue.7
-
-
Couprie, C.1
Grady, L.2
Najman, L.3
Talbot, H.4
-
11
-
-
0742303474
-
The image foresting transform: Theory, algorithms, and applications
-
A. X. Falcão, J. Stolfi, and R. de Alencar Lotufo. The image foresting transform: Theory, algorithms, and applications. IEEE Trans. Patt. Anal. Mach. Intell., 26 (1):19-29, 2004.
-
(2004)
IEEE Trans. Patt. Anal. Mach. Intell.
, vol.26
, Issue.1
, pp. 19-29
-
-
Falcão, A.X.1
Stolfi, J.2
Lotufo Alencar De, R.3
-
12
-
-
0041941135
-
Learning affinity functions for image segmentation: Combining patch-based and gradient-based approaches
-
C. Fowlkes, D. Martin, and J. Malik. Learning affinity functions for image segmentation: combining patch-based and gradient-based approaches. In Proc. CVPR, 2003.
-
(2003)
Proc. CVPR
-
-
Fowlkes, C.1
Martin, D.2
Malik, J.3
-
13
-
-
33846207510
-
Random walks for image segmentation
-
L. Grady. Random walks for image segmentation. IEEE Trans. Patt. Anal. Mach. Intell., 28 (11):1768-1783, 2006.
-
(2006)
IEEE Trans. Patt. Anal. Mach. Intell.
, vol.28
, Issue.11
, pp. 1768-1783
-
-
Grady, L.1
-
14
-
-
50649114600
-
Supervised learning of image restoration with convolutional networks
-
V. Jain, J. F. Murray, F. Roth, S. Turaga, V. Zhigulin, K. L. Briggman, M. N. Helmstaedter, W. Denk, and H. S. Seung. Supervised learning of image restoration with convolutional networks. Proc. ICCV'07, pages 1-8, 2007.
-
(2007)
Proc. ICCV'07
, pp. 1-8
-
-
Jain, V.1
Murray, J.F.2
Roth, F.3
Turaga, S.4
Zhigulin, V.5
Briggman, K.L.6
Helmstaedter, M.N.7
Denk, W.8
Seung, H.S.9
-
15
-
-
85018471675
-
-
arXiv:1611. 00421
-
M. Januszewski, J. Maitin-Shepard, P. Li, J. Kornfeld, W. Denk, and V. Jain. Flood-filling networks. arXiv:1611. 00421, 2016.
-
(2016)
Flood-filling Networks
-
-
Januszewski, M.1
Maitin-Shepard, J.2
Li, P.3
Kornfeld, J.4
Denk, W.5
Jain, V.6
-
16
-
-
85041931157
-
-
arXiv:1611. 06973
-
S. Knowles-Barley, V. Kaynig, T. R. Jones, A. Wilson, J. Morgan, D. Lee, D. Berger, N. Kasthuri, J. W. Lichtman, and H. Pfister. RhoanaNet pipeline: Dense automatic neural annotation. arXiv:1611. 06973, 2016.
-
(2016)
RhoanaNet Pipeline: Dense Automatic Neural Annotation
-
-
Knowles-Barley, S.1
Kaynig, V.2
Jones, T.R.3
Wilson, A.4
Morgan, J.5
Lee, D.6
Berger, D.7
Kasthuri, N.8
Lichtman, J.W.9
Pfister, H.10
-
18
-
-
84965135289
-
-
arXiv:1509. 02971
-
T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver, and D. Wierstra. Continuous control with deep reinforcement learning. arXiv:1509. 02971, 2015.
-
(2015)
Continuous Control with Deep Reinforcement Learning
-
-
Lillicrap, T.P.1
Hunt, J.J.2
Pritzel, A.3
Heess, N.4
Erez, T.5
Tassa, Y.6
Silver, D.7
Wierstra, D.8
-
19
-
-
31844440880
-
Comparing clusterings: An axiomatic view
-
M. Meila. Comparing clusterings: an axiomatic view. In Proc. ICML'05, pages 577-584, 2005.
-
(2005)
Proc. ICML'05
, pp. 577-584
-
-
Meila, M.1
-
20
-
-
85014487450
-
-
arXiv preprint:1612. 02120
-
Y. Meirovitch, A. Matveev, H. Saribekyan, D. Budden, D. Rolnick, G. Odor, S. K.-B. T. R. Jones, H. Pfister, J. W. Lichtman, and N. Shavit. A multi-pass approach to largescale connectomics. arXiv preprint:1612. 02120, 2016.
-
(2016)
A Multi-pass Approach to Largescale Connectomics
-
-
Meirovitch, Y.1
Matveev, A.2
Saribekyan, H.3
Budden, D.4
Rolnick, D.5
Odor, G.6
Jones, S.K.-B.T.R.7
Pfister, H.8
Lichtman, J.W.9
Shavit, N.10
-
22
-
-
84905083174
-
Watersheds on weighted graphs
-
F. Meyer. Watersheds on weighted graphs. Pattern Recognition Letters, 47:72-79, 2014.
-
(2014)
Pattern Recognition Letters
, vol.47
, pp. 72-79
-
-
Meyer, F.1
-
23
-
-
84999036937
-
Asynchronous methods for deep reinforcement learning
-
V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. P. Lillicrap, et al. Asynchronous methods for deep reinforcement learning. In Proc. ICML'16, 2016.
-
(2016)
Proc. ICML'16
-
-
Mnih, V.1
Badia, A.P.2
Mirza, M.3
Graves, A.4
Lillicrap, T.P.5
-
24
-
-
84882631243
-
Machine learning of hierarchical clustering to segment 2D and 3D images
-
J. Nunez-Iglesias, R. Kennedy, T. Parag, J. Shi, and D. Chklovskii. Machine learning of hierarchical clustering to segment 2D and 3D images. PLoS one, 8:e71715, 2013.
-
(2013)
PLoS One
, vol.8
, pp. e71715
-
-
Nunez-Iglesias, J.1
Kennedy, R.2
Parag, T.3
Shi, J.4
Chklovskii, D.5
-
26
-
-
0000950331
-
The watershed transform: Definitions, algorithms and parallelization strategies
-
J. B. Roerdink and A. Meijster. The watershed transform: Definitions, algorithms and parallelization strategies. Fundamenta informaticae, 41 (1, 2):187-228, 2000.
-
(2000)
Fundamenta Informaticae
, vol.41
, Issue.1-2
, pp. 187-228
-
-
Roerdink, J.B.1
Meijster, A.2
-
27
-
-
84951834022
-
U-Net: Convolutional networks for biomedical image segmentation
-
O. Ronneberger, P. Fischer, and T. Brox. U-Net: convolutional networks for biomedical image segmentation. Proc. MICCAI'15, pages 234-241, 2015.
-
(2015)
Proc. MICCAI'15
, pp. 234-241
-
-
Ronneberger, O.1
Fischer, P.2
Brox, T.3
-
29
-
-
84898939480
-
Policy gradient methods for reinforcement learning with function approximation
-
R. S. Sutton, D. A. McAllester, S. P. Singh, Y. Mansour, et al. Policy gradient methods for reinforcement learning with function approximation. In Proc. NIPS'99, 1999.
-
(1999)
Proc. NIPS'99
-
-
Sutton, R.S.1
McAllester, D.A.2
Singh, S.P.3
Mansour, Y.4
-
30
-
-
84859429387
-
-
arXiv:0911. 5372
-
S. C. Turaga, K. L. Briggman, M. Helmstaedter, W. Denk, and H. S. Seung. Maximin affinity learning of image segmentation. arXiv:0911. 5372, 2009.
-
(2009)
Maximin Affinity Learning of Image Segmentation
-
-
Turaga, S.C.1
Briggman, K.L.2
Helmstaedter, M.3
Denk, W.4
Seung, H.S.5
-
31
-
-
77649302828
-
Convolutional networks can learn to generate affinity graphs for image segmentation
-
S. C. Turaga, J. F. Murray, V. Jain, F. Roth, M. Helmstaedter, K. Briggman, W. Denk, and H. S. Seung. Convolutional networks can learn to generate affinity graphs for image segmentation. Neural Computation, 22 (2):511-538, 2010.
-
(2010)
Neural Computation
, vol.22
, Issue.2
, pp. 511-538
-
-
Turaga, S.C.1
Murray, J.F.2
Jain, V.3
Roth, F.4
Helmstaedter, M.5
Briggman, K.6
Denk, W.7
Seung, H.S.8
-
33
-
-
84973859794
-
Holistically-nested edge detection
-
S. Xie and Z. Tu. Holistically-nested edge detection. In Proc. ICCV'15, pages 1395-1403, 2015.
-
(2015)
Proc. ICCV'15
, pp. 1395-1403
-
-
Xie, S.1
Tu, Z.2
|