메뉴 건너뛰기




Volumn 2017-October, Issue , 2017, Pages 2030-2038

Learned Watershed: End-to-End Learning of Seeded Segmentation

Author keywords

[No Author keywords available]

Indexed keywords

WATERSHEDS;

EID: 85041914104     PISSN: 15505499     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/ICCV.2017.222     Document Type: Conference Paper
Times cited : (36)

References (35)
  • 3
    • 84948763339 scopus 로고    scopus 로고
    • Crowdsourcing the creation of image segmentation algorithms for connectomics
    • I. Arganda-Carreras, S. Turaga, D. Berger, et al. Crowdsourcing the creation of image segmentation algorithms for connectomics. Front. Neuroanatomy, 9:142, 2015.
    • (2015) Front. Neuroanatomy , vol.9 , pp. 142
    • Arganda-Carreras, I.1    Turaga, S.2    Berger, D.3
  • 5
    • 85011370891 scopus 로고    scopus 로고
    • Multicut brings automated neurite segmentation closer to human performance
    • T. Beier, C. Pape, N. Rahaman, T. Prange, et al. Multicut brings automated neurite segmentation closer to human performance. Nature Methods, 14 (2):101-102, 2017.
    • (2017) Nature Methods , vol.14 , Issue.2 , pp. 101-102
    • Beier, T.1    Pape, C.2    Rahaman, N.3    Prange, T.4
  • 6
    • 85041901637 scopus 로고    scopus 로고
    • Pancreas segmentation in MRI using graph-based decision fusion on convolutional neural networks
    • J. Cai, L. Lu, Z. Zhang, F. Xing, L. Yang, and Q. Yin. Pancreas segmentation in MRI using graph-based decision fusion on convolutional neural networks. In Proc. MICCAI, 2016.
    • (2016) Proc. MICCAI
    • Cai, J.1    Lu, L.2    Zhang, Z.3    Xing, F.4    Yang, L.5    Yin, Q.6
  • 12
    • 0041941135 scopus 로고    scopus 로고
    • Learning affinity functions for image segmentation: Combining patch-based and gradient-based approaches
    • C. Fowlkes, D. Martin, and J. Malik. Learning affinity functions for image segmentation: combining patch-based and gradient-based approaches. In Proc. CVPR, 2003.
    • (2003) Proc. CVPR
    • Fowlkes, C.1    Martin, D.2    Malik, J.3
  • 13
    • 33846207510 scopus 로고    scopus 로고
    • Random walks for image segmentation
    • L. Grady. Random walks for image segmentation. IEEE Trans. Patt. Anal. Mach. Intell., 28 (11):1768-1783, 2006.
    • (2006) IEEE Trans. Patt. Anal. Mach. Intell. , vol.28 , Issue.11 , pp. 1768-1783
    • Grady, L.1
  • 19
    • 31844440880 scopus 로고    scopus 로고
    • Comparing clusterings: An axiomatic view
    • M. Meila. Comparing clusterings: an axiomatic view. In Proc. ICML'05, pages 577-584, 2005.
    • (2005) Proc. ICML'05 , pp. 577-584
    • Meila, M.1
  • 22
    • 84905083174 scopus 로고    scopus 로고
    • Watersheds on weighted graphs
    • F. Meyer. Watersheds on weighted graphs. Pattern Recognition Letters, 47:72-79, 2014.
    • (2014) Pattern Recognition Letters , vol.47 , pp. 72-79
    • Meyer, F.1
  • 24
    • 84882631243 scopus 로고    scopus 로고
    • Machine learning of hierarchical clustering to segment 2D and 3D images
    • J. Nunez-Iglesias, R. Kennedy, T. Parag, J. Shi, and D. Chklovskii. Machine learning of hierarchical clustering to segment 2D and 3D images. PLoS one, 8:e71715, 2013.
    • (2013) PLoS One , vol.8 , pp. e71715
    • Nunez-Iglesias, J.1    Kennedy, R.2    Parag, T.3    Shi, J.4    Chklovskii, D.5
  • 26
    • 0000950331 scopus 로고    scopus 로고
    • The watershed transform: Definitions, algorithms and parallelization strategies
    • J. B. Roerdink and A. Meijster. The watershed transform: Definitions, algorithms and parallelization strategies. Fundamenta informaticae, 41 (1, 2):187-228, 2000.
    • (2000) Fundamenta Informaticae , vol.41 , Issue.1-2 , pp. 187-228
    • Roerdink, J.B.1    Meijster, A.2
  • 27
    • 84951834022 scopus 로고    scopus 로고
    • U-Net: Convolutional networks for biomedical image segmentation
    • O. Ronneberger, P. Fischer, and T. Brox. U-Net: convolutional networks for biomedical image segmentation. Proc. MICCAI'15, pages 234-241, 2015.
    • (2015) Proc. MICCAI'15 , pp. 234-241
    • Ronneberger, O.1    Fischer, P.2    Brox, T.3
  • 29
    • 84898939480 scopus 로고    scopus 로고
    • Policy gradient methods for reinforcement learning with function approximation
    • R. S. Sutton, D. A. McAllester, S. P. Singh, Y. Mansour, et al. Policy gradient methods for reinforcement learning with function approximation. In Proc. NIPS'99, 1999.
    • (1999) Proc. NIPS'99
    • Sutton, R.S.1    McAllester, D.A.2    Singh, S.P.3    Mansour, Y.4
  • 32
    • 17444391301 scopus 로고    scopus 로고
    • The viscous watershed transform
    • C. Vachier and F. Meyer. The viscous watershed transform. J. Math. Imaging and Vision, 22 (2):251-267, 2005.
    • (2005) J. Math. Imaging and Vision , vol.22 , Issue.2 , pp. 251-267
    • Vachier, C.1    Meyer, F.2
  • 33
    • 84973859794 scopus 로고    scopus 로고
    • Holistically-nested edge detection
    • S. Xie and Z. Tu. Holistically-nested edge detection. In Proc. ICCV'15, pages 1395-1403, 2015.
    • (2015) Proc. ICCV'15 , pp. 1395-1403
    • Xie, S.1    Tu, Z.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.