메뉴 건너뛰기




Volumn 148, Issue , 2018, Pages 49-58

Oil price forecasting using a hybrid model

Author keywords

Crude oil price; Forecasting; Hybrid model; Kalman filter; NAR

Indexed keywords

COSTS; CRUDE OIL; ECONOMICS; ELECTRONIC TRADING; GENETIC ALGORITHMS; INVESTMENTS; KALMAN FILTERS; STATE SPACE METHODS;

EID: 85041648163     PISSN: 03605442     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.energy.2018.01.007     Document Type: Article
Times cited : (138)

References (50)
  • 1
    • 84991294549 scopus 로고    scopus 로고
    • Forecasting spot oil price in a dynamic model averaging framework-Have the determinants changed over time?
    • Drachal, K., Forecasting spot oil price in a dynamic model averaging framework-Have the determinants changed over time?. Energy Econ 60 (2016), 35–46, 10.1016/j.eneco.2016.09.020.
    • (2016) Energy Econ , vol.60 , pp. 35-46
    • Drachal, K.1
  • 2
    • 84948574031 scopus 로고    scopus 로고
    • A novel decomposition ensemble model with extended extreme learning machine for crude oil price forecasting
    • Yu, L., Dai, W., Tang, L., A novel decomposition ensemble model with extended extreme learning machine for crude oil price forecasting. Eng Appl Artif Intell 47 (2016), 110–121, 10.1016/j.engappai.2015.04.016.
    • (2016) Eng Appl Artif Intell , vol.47 , pp. 110-121
    • Yu, L.1    Dai, W.2    Tang, L.3
  • 3
    • 84931263759 scopus 로고    scopus 로고
    • Forecasting crude oil price using artificial neural networks: a literature survey
    • Hamdi, M., Aloui, C., Forecasting crude oil price using artificial neural networks: a literature survey. Econ Bull 35:2 (2015), 1339–1359.
    • (2015) Econ Bull , vol.35 , Issue.2 , pp. 1339-1359
    • Hamdi, M.1    Aloui, C.2
  • 4
    • 45949131559 scopus 로고
    • A small forecasting model of the world oil market
    • Amano, A., A small forecasting model of the world oil market. J Pol Model 9:4 (1987), 615–635, 10.1016/0161-8938(87)90016-0.
    • (1987) J Pol Model , vol.9 , Issue.4 , pp. 615-635
    • Amano, A.1
  • 5
    • 0036853314 scopus 로고    scopus 로고
    • An empirical exploration of the world oil price under the target zone model
    • Tang, L., Hammoudeh, S., An empirical exploration of the world oil price under the target zone model. Energy Econ 24 (2002), 557–596.
    • (2002) Energy Econ , vol.24 , pp. 557-596
    • Tang, L.1    Hammoudeh, S.2
  • 6
    • 33747178344 scopus 로고    scopus 로고
    • Forecasting short-run crude oil price using high and low-inventory variables
    • Ye, M., Zyren, J., Shore, J., Forecasting short-run crude oil price using high and low-inventory variables. Energy Pol 34 (2006), 2736–2743.
    • (2006) Energy Pol , vol.34 , pp. 2736-2743
    • Ye, M.1    Zyren, J.2    Shore, J.3
  • 7
    • 33947377862 scopus 로고    scopus 로고
    • Forecast of oil price and consumption in the short term under three scenarios: parabolic, linear and chaotic behavior
    • Gori, F., Ludovisi, D., Cerritelli, P.F., Forecast of oil price and consumption in the short term under three scenarios: parabolic, linear and chaotic behavior. Energy Econ 32 (2007), 1291–1296.
    • (2007) Energy Econ , vol.32 , pp. 1291-1296
    • Gori, F.1    Ludovisi, D.2    Cerritelli, P.F.3
  • 8
    • 33749665980 scopus 로고    scopus 로고
    • Forecasting nonlinear crude oil prices
    • Moshiri, S., Foroutan, F., Forecasting nonlinear crude oil prices. J Energy 27 (2006), 81–95.
    • (2006) J Energy , vol.27 , pp. 81-95
    • Moshiri, S.1    Foroutan, F.2
  • 9
    • 33746629409 scopus 로고    scopus 로고
    • A new method for crude oil price forecasting based on support vector machines
    • Xie, W., Yu, L., Xu, S., Wang, S., A new method for crude oil price forecasting based on support vector machines. Int Conf Comput Sci(Part IV), 2006, 444–451.
    • (2006) Int Conf Comput Sci , pp. 444-451
    • Xie, W.1    Yu, L.2    Xu, S.3    Wang, S.4
  • 10
    • 48049095703 scopus 로고    scopus 로고
    • Forecasting crude oil price with an EMD-based neural network ensemble learning paradigm
    • Yu, L., Wang, S., Lai, K.K., Forecasting crude oil price with an EMD-based neural network ensemble learning paradigm. Energy Econ 30:5 (2008), 2623–2635.
    • (2008) Energy Econ , vol.30 , Issue.5 , pp. 2623-2635
    • Yu, L.1    Wang, S.2    Lai, K.K.3
  • 11
    • 79953324637 scopus 로고    scopus 로고
    • Forecasting model for crude oil price using artificial neural networks and commodity futures prices
    • Kulkarni, S., Haidar, I., Forecasting model for crude oil price using artificial neural networks and commodity futures prices. Int J Comput Sci Inf Secur, 2(1), 2009.
    • (2009) Int J Comput Sci Inf Secur , vol.2 , Issue.1
    • Kulkarni, S.1    Haidar, I.2
  • 12
    • 84870618351 scopus 로고    scopus 로고
    • An integrated model using wavelet decomposition and least squares support vector machines for monthly crude oil prices forecasting
    • Bao, Y., Zhang, X., Yu, L., Lai, K.K., Wang, S., An integrated model using wavelet decomposition and least squares support vector machines for monthly crude oil prices forecasting. N Math Nat Comput 7:2 (2011), 299–311.
    • (2011) N Math Nat Comput , vol.7 , Issue.2 , pp. 299-311
    • Bao, Y.1    Zhang, X.2    Yu, L.3    Lai, K.K.4    Wang, S.5
  • 13
    • 84867234176 scopus 로고    scopus 로고
    • Crude oil price analysis and forecasting using wavelet decomposed ensemble model
    • He, K., Yu, L., Lai, K.K., Crude oil price analysis and forecasting using wavelet decomposed ensemble model. Energy 46 (2012), 564–574.
    • (2012) Energy , vol.46 , pp. 564-574
    • He, K.1    Yu, L.2    Lai, K.K.3
  • 14
    • 84855811116 scopus 로고    scopus 로고
    • A flexible neural network-fuzzy mathematical programming algorithm for improvement of oil price estimation and forecasting
    • Azadeh, A., Moghaddam, M., Khakzad, M., Ebrahimipour, V., A flexible neural network-fuzzy mathematical programming algorithm for improvement of oil price estimation and forecasting. Comput Ind Eng 62:2 (2012), 421–430.
    • (2012) Comput Ind Eng , vol.62 , Issue.2 , pp. 421-430
    • Azadeh, A.1    Moghaddam, M.2    Khakzad, M.3    Ebrahimipour, V.4
  • 16
    • 84896445819 scopus 로고    scopus 로고
    • Daily crude oil price forecasting model using ARIMA, generalized autoregressive conditional heteroscedastic and support vector machines
    • Ahmed, R.A., Shabri, A.B., Daily crude oil price forecasting model using ARIMA, generalized autoregressive conditional heteroscedastic and support vector machines. Am J Appl Sci 11:3 (2014), 425–432, 10.3844/ajassp.2014.425.432.
    • (2014) Am J Appl Sci , vol.11 , Issue.3 , pp. 425-432
    • Ahmed, R.A.1    Shabri, A.B.2
  • 17
    • 84937780994 scopus 로고    scopus 로고
    • A decomposition-ensemble model with data-characteristic-driven reconstruction for crude oil price forecasting
    • Yu, L., Wang, Z., Tang, L., A decomposition-ensemble model with data-characteristic-driven reconstruction for crude oil price forecasting. Appl Energy 156 (2015), 251–267.
    • (2015) Appl Energy , vol.156 , pp. 251-267
    • Yu, L.1    Wang, Z.2    Tang, L.3
  • 18
    • 84929303492 scopus 로고    scopus 로고
    • A novel CEEMD-based EELM ensemble learning paradigm for crude oil price forecasting
    • Tang, L., Dai, W., Yu, L., Wang, S., A novel CEEMD-based EELM ensemble learning paradigm for crude oil price forecasting. Int J Inf Technol Decis Making 14:1 (2015), 141–169.
    • (2015) Int J Inf Technol Decis Making , vol.14 , Issue.1 , pp. 141-169
    • Tang, L.1    Dai, W.2    Yu, L.3    Wang, S.4
  • 19
    • 84938709928 scopus 로고    scopus 로고
    • A hybrid grid-GA-based LSSVR learning paradigm for crude oil price forecasting
    • Yu, L., Dai, W., Tang, L., Wu, J., A hybrid grid-GA-based LSSVR learning paradigm for crude oil price forecasting. Neural Comput Appl 27:8 (2016), 2193–2215.
    • (2016) Neural Comput Appl , vol.27 , Issue.8 , pp. 2193-2215
    • Yu, L.1    Dai, W.2    Tang, L.3    Wu, J.4
  • 20
    • 85033224313 scopus 로고    scopus 로고
    • A deep learning ensemble approach for crude oil price forecasting
    • Zhao, Y., Li, J., Yu, L., A deep learning ensemble approach for crude oil price forecasting. Energy Econ 66 (2017), 9–16.
    • (2017) Energy Econ , vol.66 , pp. 9-16
    • Zhao, Y.1    Li, J.2    Yu, L.3
  • 21
    • 84992364628 scopus 로고    scopus 로고
    • LSSVR ensemble learning with uncertain parameters for crude oil price forecasting
    • Yu, L., Xu, H., Tang, L., LSSVR ensemble learning with uncertain parameters for crude oil price forecasting. Appl Soft Comput 56 (2017), 692–701.
    • (2017) Appl Soft Comput , vol.56 , pp. 692-701
    • Yu, L.1    Xu, H.2    Tang, L.3
  • 22
    • 80053500806 scopus 로고    scopus 로고
    • A new hybrid methodology for nonlinear time series forecasting
    • Khashei, M., Bijari, M., A new hybrid methodology for nonlinear time series forecasting. Model Simulat Eng, 2011, 2011, 10.1155/2011/379121.
    • (2011) Model Simulat Eng , vol.2011
    • Khashei, M.1    Bijari, M.2
  • 24
    • 0014629731 scopus 로고
    • The combination of forecasts
    • Bates, J.M., Granger, C.W.J., The combination of forecasts. Oper Res Soc 20:4 (1969), 451–468.
    • (1969) Oper Res Soc , vol.20 , Issue.4 , pp. 451-468
    • Bates, J.M.1    Granger, C.W.J.2
  • 25
    • 4744365124 scopus 로고    scopus 로고
    • Combination forecasts of output growth in a seven country data set
    • Stock, J.H., Watson, M.W., Combination forecasts of output growth in a seven country data set. J Forecast 23 (2004), 405–430.
    • (2004) J Forecast , vol.23 , pp. 405-430
    • Stock, J.H.1    Watson, M.W.2
  • 26
    • 53649106431 scopus 로고    scopus 로고
    • Forecasting with many predictors-handbook of economic forecasting
    • Elsevier B.V
    • Stock, J.H., Watson, M.W., Forecasting with many predictors-handbook of economic forecasting. vol. 1, 2006, Elsevier B.V, 516–550.
    • (2006) , vol.1 , pp. 516-550
    • Stock, J.H.1    Watson, M.W.2
  • 27
    • 42149159876 scopus 로고    scopus 로고
    • Univariate time series models
    • Teräsvirta, T., Univariate time series models. Palgrave Handb Econom 1 (2006), 396–424.
    • (2006) Palgrave Handb Econom , vol.1 , pp. 396-424
    • Teräsvirta, T.1
  • 28
    • 84942510415 scopus 로고    scopus 로고
    • A novel hybrid method for crude oil price forecasting
    • Zhang, J.L., Zhang, Y.J., Zhang, L., A novel hybrid method for crude oil price forecasting. Energy Econ 49 (2015), 649–659, 10.1016/j.eneco.2015.02.018.
    • (2015) Energy Econ , vol.49 , pp. 649-659
    • Zhang, J.L.1    Zhang, Y.J.2    Zhang, L.3
  • 29
    • 84938365031 scopus 로고    scopus 로고
    • A novel hybrid FA-based LSSVR learning paradigm for hydropower consumption forecasting
    • Tang, L., Wang, Z., Li, X., Yu, L., Zhang, G., A novel hybrid FA-based LSSVR learning paradigm for hydropower consumption forecasting. J Syst Sci Complex 28:5 (2015), 1080–1101.
    • (2015) J Syst Sci Complex , vol.28 , Issue.5 , pp. 1080-1101
    • Tang, L.1    Wang, Z.2    Li, X.3    Yu, L.4    Zhang, G.5
  • 30
    • 84991795024 scopus 로고    scopus 로고
    • Predicting financial time series data using hybrid model
    • Al-Hnaity, B., Abbod, M., Predicting financial time series data using hybrid model. Intell Syst Appl 650 (2016), 19–41, 10.1007/978-3-319-33386-1_2.
    • (2016) Intell Syst Appl , vol.650 , pp. 19-41
    • Al-Hnaity, B.1    Abbod, M.2
  • 31
    • 79959829242 scopus 로고    scopus 로고
    • A seasonal hybrid procedure for electricity demand forecasting in China
    • Zhu, S., Wang, J.Z., Zhao, W., Wang, J., A seasonal hybrid procedure for electricity demand forecasting in China. Appl Energy 88 (2011), 3807–3815, 10.1016/j.apenergy.2011.05.005.
    • (2011) Appl Energy , vol.88 , pp. 3807-3815
    • Zhu, S.1    Wang, J.Z.2    Zhao, W.3    Wang, J.4
  • 32
    • 84858001572 scopus 로고    scopus 로고
    • A novel hybrid ensemble learning paradigm for nuclear energy consumption forecasting
    • Tang, L., Yu, L., Wang, S., Li, J., Wang, S., A novel hybrid ensemble learning paradigm for nuclear energy consumption forecasting. Appl Energy 93 (2012), 432–443.
    • (2012) Appl Energy , vol.93 , pp. 432-443
    • Tang, L.1    Yu, L.2    Wang, S.3    Li, J.4    Wang, S.5
  • 33
    • 84858745887 scopus 로고    scopus 로고
    • Stock index forecasting based on a hybrid model
    • Wang, J.J., Wang, J.Z., Zhang, Z.G., Guo, S.P., Stock index forecasting based on a hybrid model. Omega 40 (2012), 758–766, 10.1016/j.omega.2011.07.008.
    • (2012) Omega , vol.40 , pp. 758-766
    • Wang, J.J.1    Wang, J.Z.2    Zhang, Z.G.3    Guo, S.P.4
  • 34
    • 84893498952 scopus 로고    scopus 로고
    • Combining forecasts of electricity consumption in China with time-varying weights updated by a high-order Markov chain model
    • Zhao, W., Wang, J., Lu, H., Combining forecasts of electricity consumption in China with time-varying weights updated by a high-order Markov chain model. Omega 45 (2014), 80–91, 10.1016/j.omega.2014.01.002.
    • (2014) Omega , vol.45 , pp. 80-91
    • Zhao, W.1    Wang, J.2    Lu, H.3
  • 35
    • 0002276308 scopus 로고
    • Assessment and propagation of model uncertainty
    • Draper, D., Assessment and propagation of model uncertainty. J Roy Stat Soc B 56 (1995), 45–98.
    • (1995) J Roy Stat Soc B , vol.56 , pp. 45-98
    • Draper, D.1
  • 36
    • 0003891062 scopus 로고
    • Specification searches: Ad Hoc inference with non-experimental data
    • John Wiley & Sons New York
    • Leamer, E., Specification searches: Ad Hoc inference with non-experimental data. 1978, John Wiley & Sons, New York.
    • (1978)
    • Leamer, E.1
  • 37
    • 77449090103 scopus 로고    scopus 로고
    • Bayesian averaging over many dynamic model structures with evidence on the great ratios and liquidity trap risk
    • Tinbergen Institute Discussion Paper Series No. TI 2008-096/4
    • Strachan, R.W., Van Dijk, H.K., Bayesian averaging over many dynamic model structures with evidence on the great ratios and liquidity trap risk. Tinbergen Institute Discussion Paper Series, 2008, 10.2139/ssrn.1283567 No. TI 2008-096/4.
    • (2008)
    • Strachan, R.W.1    Van Dijk, H.K.2
  • 38
    • 0036074753 scopus 로고    scopus 로고
    • Combined forecasts from linear and nonlinear time series models
    • Terui, N., Van Dijk, H.K., Combined forecasts from linear and nonlinear time series models. Int J Forecast 18 (2002), 421–438.
    • (2002) Int J Forecast , vol.18 , pp. 421-438
    • Terui, N.1    Van Dijk, H.K.2
  • 39
  • 40
    • 51749094894 scopus 로고    scopus 로고
    • Forecasts of US short-term interest rates: a flexible forecast combination approach
    • Federal Reserve Bank of St. Louis Working Papers Series
    • Guidolin, M., Timmermann, A., Forecasts of US short-term interest rates: a flexible forecast combination approach. 2007 Federal Reserve Bank of St. Louis Working Papers Series.
    • (2007)
    • Guidolin, M.1    Timmermann, A.2
  • 41
    • 77949261436 scopus 로고    scopus 로고
    • Combined modeling for electric load forecasting with adaptive particle swarm optimization
    • Wang, J.Z., Zhu, S.L., Zhang, W.Y., Lu, H.Y., Combined modeling for electric load forecasting with adaptive particle swarm optimization. Energy 35:4 (2010), 1671–1678, 10.1016/j.energy.2009.12.015.
    • (2010) Energy , vol.35 , Issue.4 , pp. 1671-1678
    • Wang, J.Z.1    Zhu, S.L.2    Zhang, W.Y.3    Lu, H.Y.4
  • 42
    • 85041663879 scopus 로고    scopus 로고
    • Forecasting the Coke price based on the Kalman filtering algorithm
    • Meifeng, Z., Guohao, Z., Forecasting the Coke price based on the Kalman filtering algorithm. J Resour Ecol 6:1 (2015), 60–64.
    • (2015) J Resour Ecol , vol.6 , Issue.1 , pp. 60-64
    • Meifeng, Z.1    Guohao, Z.2
  • 43
    • 0037243071 scopus 로고    scopus 로고
    • Time series forecasting using a hybrid ARIMA and neural network model
    • Zhang, G.P., Time series forecasting using a hybrid ARIMA and neural network model. Neurocomputing 50 (2003), 159–175.
    • (2003) Neurocomputing , vol.50 , pp. 159-175
    • Zhang, G.P.1
  • 44
    • 84961143388 scopus 로고    scopus 로고
    • Combination of forecasts for the price of crude oil on the spot market
    • Azevedo, V.G., Campos, L.M.S., Combination of forecasts for the price of crude oil on the spot market. Int J Prod Res 54:17 (2016), 5219–5235, 10.1080/00207543.2016.1162340.
    • (2016) Int J Prod Res , vol.54 , Issue.17 , pp. 5219-5235
    • Azevedo, V.G.1    Campos, L.M.S.2
  • 45
  • 46
    • 0003123930 scopus 로고    scopus 로고
    • Forecasting with artificial neural networks: the state of the art
    • Zhang, G., Patuwo, B.E., Hu, M.Y., Forecasting with artificial neural networks: the state of the art. Int J Forecast 14 (1998), 35–62.
    • (1998) Int J Forecast , vol.14 , pp. 35-62
    • Zhang, G.1    Patuwo, B.E.2    Hu, M.Y.3
  • 47
    • 70349453596 scopus 로고    scopus 로고
    • An artificial neural network (p,d,q) model for time series forecasting
    • Khashei, M., Bijari, M., An artificial neural network (p,d,q) model for time series forecasting. Expert Syst Appl 37 (2010), 479–489.
    • (2010) Expert Syst Appl , vol.37 , pp. 479-489
    • Khashei, M.1    Bijari, M.2
  • 48
    • 78650981315 scopus 로고    scopus 로고
    • Introductory time series with R
    • Springer-Verlag New York
    • Cowpertwait, P.S.P., Metcalfe, A.V., Introductory time series with R. 2009, Springer-Verlag, New York.
    • (2009)
    • Cowpertwait, P.S.P.1    Metcalfe, A.V.2
  • 49
    • 84938943386 scopus 로고    scopus 로고
    • Time series forecasting using hybrid ARIMA and ANN models based on DWT decomposition
    • Khandelwal, I., Adhikari, R., Verma, G., Time series forecasting using hybrid ARIMA and ANN models based on DWT decomposition. Procedia Comput Sci 48 (2015), 173–179.
    • (2015) Procedia Comput Sci , vol.48 , pp. 173-179
    • Khandelwal, I.1    Adhikari, R.2    Verma, G.3
  • 50
    • 68249136965 scopus 로고
    • Comparing predictive accuracy
    • Diebold, F.X., Mariano, R.S., Comparing predictive accuracy. J Bus Econ Stat 13 (1995), 253–263.
    • (1995) J Bus Econ Stat , vol.13 , pp. 253-263
    • Diebold, F.X.1    Mariano, R.S.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.