-
1
-
-
84991294549
-
Forecasting spot oil price in a dynamic model averaging framework-Have the determinants changed over time?
-
Drachal, K., Forecasting spot oil price in a dynamic model averaging framework-Have the determinants changed over time?. Energy Econ 60 (2016), 35–46, 10.1016/j.eneco.2016.09.020.
-
(2016)
Energy Econ
, vol.60
, pp. 35-46
-
-
Drachal, K.1
-
2
-
-
84948574031
-
A novel decomposition ensemble model with extended extreme learning machine for crude oil price forecasting
-
Yu, L., Dai, W., Tang, L., A novel decomposition ensemble model with extended extreme learning machine for crude oil price forecasting. Eng Appl Artif Intell 47 (2016), 110–121, 10.1016/j.engappai.2015.04.016.
-
(2016)
Eng Appl Artif Intell
, vol.47
, pp. 110-121
-
-
Yu, L.1
Dai, W.2
Tang, L.3
-
3
-
-
84931263759
-
Forecasting crude oil price using artificial neural networks: a literature survey
-
Hamdi, M., Aloui, C., Forecasting crude oil price using artificial neural networks: a literature survey. Econ Bull 35:2 (2015), 1339–1359.
-
(2015)
Econ Bull
, vol.35
, Issue.2
, pp. 1339-1359
-
-
Hamdi, M.1
Aloui, C.2
-
4
-
-
45949131559
-
A small forecasting model of the world oil market
-
Amano, A., A small forecasting model of the world oil market. J Pol Model 9:4 (1987), 615–635, 10.1016/0161-8938(87)90016-0.
-
(1987)
J Pol Model
, vol.9
, Issue.4
, pp. 615-635
-
-
Amano, A.1
-
5
-
-
0036853314
-
An empirical exploration of the world oil price under the target zone model
-
Tang, L., Hammoudeh, S., An empirical exploration of the world oil price under the target zone model. Energy Econ 24 (2002), 557–596.
-
(2002)
Energy Econ
, vol.24
, pp. 557-596
-
-
Tang, L.1
Hammoudeh, S.2
-
6
-
-
33747178344
-
Forecasting short-run crude oil price using high and low-inventory variables
-
Ye, M., Zyren, J., Shore, J., Forecasting short-run crude oil price using high and low-inventory variables. Energy Pol 34 (2006), 2736–2743.
-
(2006)
Energy Pol
, vol.34
, pp. 2736-2743
-
-
Ye, M.1
Zyren, J.2
Shore, J.3
-
7
-
-
33947377862
-
Forecast of oil price and consumption in the short term under three scenarios: parabolic, linear and chaotic behavior
-
Gori, F., Ludovisi, D., Cerritelli, P.F., Forecast of oil price and consumption in the short term under three scenarios: parabolic, linear and chaotic behavior. Energy Econ 32 (2007), 1291–1296.
-
(2007)
Energy Econ
, vol.32
, pp. 1291-1296
-
-
Gori, F.1
Ludovisi, D.2
Cerritelli, P.F.3
-
8
-
-
33749665980
-
Forecasting nonlinear crude oil prices
-
Moshiri, S., Foroutan, F., Forecasting nonlinear crude oil prices. J Energy 27 (2006), 81–95.
-
(2006)
J Energy
, vol.27
, pp. 81-95
-
-
Moshiri, S.1
Foroutan, F.2
-
9
-
-
33746629409
-
A new method for crude oil price forecasting based on support vector machines
-
Xie, W., Yu, L., Xu, S., Wang, S., A new method for crude oil price forecasting based on support vector machines. Int Conf Comput Sci(Part IV), 2006, 444–451.
-
(2006)
Int Conf Comput Sci
, pp. 444-451
-
-
Xie, W.1
Yu, L.2
Xu, S.3
Wang, S.4
-
10
-
-
48049095703
-
Forecasting crude oil price with an EMD-based neural network ensemble learning paradigm
-
Yu, L., Wang, S., Lai, K.K., Forecasting crude oil price with an EMD-based neural network ensemble learning paradigm. Energy Econ 30:5 (2008), 2623–2635.
-
(2008)
Energy Econ
, vol.30
, Issue.5
, pp. 2623-2635
-
-
Yu, L.1
Wang, S.2
Lai, K.K.3
-
11
-
-
79953324637
-
Forecasting model for crude oil price using artificial neural networks and commodity futures prices
-
Kulkarni, S., Haidar, I., Forecasting model for crude oil price using artificial neural networks and commodity futures prices. Int J Comput Sci Inf Secur, 2(1), 2009.
-
(2009)
Int J Comput Sci Inf Secur
, vol.2
, Issue.1
-
-
Kulkarni, S.1
Haidar, I.2
-
12
-
-
84870618351
-
An integrated model using wavelet decomposition and least squares support vector machines for monthly crude oil prices forecasting
-
Bao, Y., Zhang, X., Yu, L., Lai, K.K., Wang, S., An integrated model using wavelet decomposition and least squares support vector machines for monthly crude oil prices forecasting. N Math Nat Comput 7:2 (2011), 299–311.
-
(2011)
N Math Nat Comput
, vol.7
, Issue.2
, pp. 299-311
-
-
Bao, Y.1
Zhang, X.2
Yu, L.3
Lai, K.K.4
Wang, S.5
-
13
-
-
84867234176
-
Crude oil price analysis and forecasting using wavelet decomposed ensemble model
-
He, K., Yu, L., Lai, K.K., Crude oil price analysis and forecasting using wavelet decomposed ensemble model. Energy 46 (2012), 564–574.
-
(2012)
Energy
, vol.46
, pp. 564-574
-
-
He, K.1
Yu, L.2
Lai, K.K.3
-
14
-
-
84855811116
-
A flexible neural network-fuzzy mathematical programming algorithm for improvement of oil price estimation and forecasting
-
Azadeh, A., Moghaddam, M., Khakzad, M., Ebrahimipour, V., A flexible neural network-fuzzy mathematical programming algorithm for improvement of oil price estimation and forecasting. Comput Ind Eng 62:2 (2012), 421–430.
-
(2012)
Comput Ind Eng
, vol.62
, Issue.2
, pp. 421-430
-
-
Azadeh, A.1
Moghaddam, M.2
Khakzad, M.3
Ebrahimipour, V.4
-
15
-
-
79957818214
-
-
LNCS
-
Khashman, A., Nwulu, I.N., Support vector machine versus back propagation algorithms for oil prediction. Lecture Notes in Computer Science book series, vol. 6677, 2011, LNCS, 530–538.
-
(2011)
Support vector machine versus back propagation algorithms for oil prediction. Lecture Notes in Computer Science book series
, vol.6677
, pp. 530-538
-
-
Khashman, A.1
Nwulu, I.N.2
-
16
-
-
84896445819
-
Daily crude oil price forecasting model using ARIMA, generalized autoregressive conditional heteroscedastic and support vector machines
-
Ahmed, R.A., Shabri, A.B., Daily crude oil price forecasting model using ARIMA, generalized autoregressive conditional heteroscedastic and support vector machines. Am J Appl Sci 11:3 (2014), 425–432, 10.3844/ajassp.2014.425.432.
-
(2014)
Am J Appl Sci
, vol.11
, Issue.3
, pp. 425-432
-
-
Ahmed, R.A.1
Shabri, A.B.2
-
17
-
-
84937780994
-
A decomposition-ensemble model with data-characteristic-driven reconstruction for crude oil price forecasting
-
Yu, L., Wang, Z., Tang, L., A decomposition-ensemble model with data-characteristic-driven reconstruction for crude oil price forecasting. Appl Energy 156 (2015), 251–267.
-
(2015)
Appl Energy
, vol.156
, pp. 251-267
-
-
Yu, L.1
Wang, Z.2
Tang, L.3
-
18
-
-
84929303492
-
A novel CEEMD-based EELM ensemble learning paradigm for crude oil price forecasting
-
Tang, L., Dai, W., Yu, L., Wang, S., A novel CEEMD-based EELM ensemble learning paradigm for crude oil price forecasting. Int J Inf Technol Decis Making 14:1 (2015), 141–169.
-
(2015)
Int J Inf Technol Decis Making
, vol.14
, Issue.1
, pp. 141-169
-
-
Tang, L.1
Dai, W.2
Yu, L.3
Wang, S.4
-
19
-
-
84938709928
-
A hybrid grid-GA-based LSSVR learning paradigm for crude oil price forecasting
-
Yu, L., Dai, W., Tang, L., Wu, J., A hybrid grid-GA-based LSSVR learning paradigm for crude oil price forecasting. Neural Comput Appl 27:8 (2016), 2193–2215.
-
(2016)
Neural Comput Appl
, vol.27
, Issue.8
, pp. 2193-2215
-
-
Yu, L.1
Dai, W.2
Tang, L.3
Wu, J.4
-
20
-
-
85033224313
-
A deep learning ensemble approach for crude oil price forecasting
-
Zhao, Y., Li, J., Yu, L., A deep learning ensemble approach for crude oil price forecasting. Energy Econ 66 (2017), 9–16.
-
(2017)
Energy Econ
, vol.66
, pp. 9-16
-
-
Zhao, Y.1
Li, J.2
Yu, L.3
-
21
-
-
84992364628
-
LSSVR ensemble learning with uncertain parameters for crude oil price forecasting
-
Yu, L., Xu, H., Tang, L., LSSVR ensemble learning with uncertain parameters for crude oil price forecasting. Appl Soft Comput 56 (2017), 692–701.
-
(2017)
Appl Soft Comput
, vol.56
, pp. 692-701
-
-
Yu, L.1
Xu, H.2
Tang, L.3
-
22
-
-
80053500806
-
A new hybrid methodology for nonlinear time series forecasting
-
Khashei, M., Bijari, M., A new hybrid methodology for nonlinear time series forecasting. Model Simulat Eng, 2011, 2011, 10.1155/2011/379121.
-
(2011)
Model Simulat Eng
, vol.2011
-
-
Khashei, M.1
Bijari, M.2
-
24
-
-
0014629731
-
The combination of forecasts
-
Bates, J.M., Granger, C.W.J., The combination of forecasts. Oper Res Soc 20:4 (1969), 451–468.
-
(1969)
Oper Res Soc
, vol.20
, Issue.4
, pp. 451-468
-
-
Bates, J.M.1
Granger, C.W.J.2
-
25
-
-
4744365124
-
Combination forecasts of output growth in a seven country data set
-
Stock, J.H., Watson, M.W., Combination forecasts of output growth in a seven country data set. J Forecast 23 (2004), 405–430.
-
(2004)
J Forecast
, vol.23
, pp. 405-430
-
-
Stock, J.H.1
Watson, M.W.2
-
26
-
-
53649106431
-
Forecasting with many predictors-handbook of economic forecasting
-
Elsevier B.V
-
Stock, J.H., Watson, M.W., Forecasting with many predictors-handbook of economic forecasting. vol. 1, 2006, Elsevier B.V, 516–550.
-
(2006)
, vol.1
, pp. 516-550
-
-
Stock, J.H.1
Watson, M.W.2
-
27
-
-
42149159876
-
Univariate time series models
-
Teräsvirta, T., Univariate time series models. Palgrave Handb Econom 1 (2006), 396–424.
-
(2006)
Palgrave Handb Econom
, vol.1
, pp. 396-424
-
-
Teräsvirta, T.1
-
28
-
-
84942510415
-
A novel hybrid method for crude oil price forecasting
-
Zhang, J.L., Zhang, Y.J., Zhang, L., A novel hybrid method for crude oil price forecasting. Energy Econ 49 (2015), 649–659, 10.1016/j.eneco.2015.02.018.
-
(2015)
Energy Econ
, vol.49
, pp. 649-659
-
-
Zhang, J.L.1
Zhang, Y.J.2
Zhang, L.3
-
29
-
-
84938365031
-
A novel hybrid FA-based LSSVR learning paradigm for hydropower consumption forecasting
-
Tang, L., Wang, Z., Li, X., Yu, L., Zhang, G., A novel hybrid FA-based LSSVR learning paradigm for hydropower consumption forecasting. J Syst Sci Complex 28:5 (2015), 1080–1101.
-
(2015)
J Syst Sci Complex
, vol.28
, Issue.5
, pp. 1080-1101
-
-
Tang, L.1
Wang, Z.2
Li, X.3
Yu, L.4
Zhang, G.5
-
30
-
-
84991795024
-
Predicting financial time series data using hybrid model
-
Al-Hnaity, B., Abbod, M., Predicting financial time series data using hybrid model. Intell Syst Appl 650 (2016), 19–41, 10.1007/978-3-319-33386-1_2.
-
(2016)
Intell Syst Appl
, vol.650
, pp. 19-41
-
-
Al-Hnaity, B.1
Abbod, M.2
-
31
-
-
79959829242
-
A seasonal hybrid procedure for electricity demand forecasting in China
-
Zhu, S., Wang, J.Z., Zhao, W., Wang, J., A seasonal hybrid procedure for electricity demand forecasting in China. Appl Energy 88 (2011), 3807–3815, 10.1016/j.apenergy.2011.05.005.
-
(2011)
Appl Energy
, vol.88
, pp. 3807-3815
-
-
Zhu, S.1
Wang, J.Z.2
Zhao, W.3
Wang, J.4
-
32
-
-
84858001572
-
A novel hybrid ensemble learning paradigm for nuclear energy consumption forecasting
-
Tang, L., Yu, L., Wang, S., Li, J., Wang, S., A novel hybrid ensemble learning paradigm for nuclear energy consumption forecasting. Appl Energy 93 (2012), 432–443.
-
(2012)
Appl Energy
, vol.93
, pp. 432-443
-
-
Tang, L.1
Yu, L.2
Wang, S.3
Li, J.4
Wang, S.5
-
33
-
-
84858745887
-
Stock index forecasting based on a hybrid model
-
Wang, J.J., Wang, J.Z., Zhang, Z.G., Guo, S.P., Stock index forecasting based on a hybrid model. Omega 40 (2012), 758–766, 10.1016/j.omega.2011.07.008.
-
(2012)
Omega
, vol.40
, pp. 758-766
-
-
Wang, J.J.1
Wang, J.Z.2
Zhang, Z.G.3
Guo, S.P.4
-
34
-
-
84893498952
-
Combining forecasts of electricity consumption in China with time-varying weights updated by a high-order Markov chain model
-
Zhao, W., Wang, J., Lu, H., Combining forecasts of electricity consumption in China with time-varying weights updated by a high-order Markov chain model. Omega 45 (2014), 80–91, 10.1016/j.omega.2014.01.002.
-
(2014)
Omega
, vol.45
, pp. 80-91
-
-
Zhao, W.1
Wang, J.2
Lu, H.3
-
35
-
-
0002276308
-
Assessment and propagation of model uncertainty
-
Draper, D., Assessment and propagation of model uncertainty. J Roy Stat Soc B 56 (1995), 45–98.
-
(1995)
J Roy Stat Soc B
, vol.56
, pp. 45-98
-
-
Draper, D.1
-
36
-
-
0003891062
-
Specification searches: Ad Hoc inference with non-experimental data
-
John Wiley & Sons New York
-
Leamer, E., Specification searches: Ad Hoc inference with non-experimental data. 1978, John Wiley & Sons, New York.
-
(1978)
-
-
Leamer, E.1
-
37
-
-
77449090103
-
Bayesian averaging over many dynamic model structures with evidence on the great ratios and liquidity trap risk
-
Tinbergen Institute Discussion Paper Series No. TI 2008-096/4
-
Strachan, R.W., Van Dijk, H.K., Bayesian averaging over many dynamic model structures with evidence on the great ratios and liquidity trap risk. Tinbergen Institute Discussion Paper Series, 2008, 10.2139/ssrn.1283567 No. TI 2008-096/4.
-
(2008)
-
-
Strachan, R.W.1
Van Dijk, H.K.2
-
38
-
-
0036074753
-
Combined forecasts from linear and nonlinear time series models
-
Terui, N., Van Dijk, H.K., Combined forecasts from linear and nonlinear time series models. Int J Forecast 18 (2002), 421–438.
-
(2002)
Int J Forecast
, vol.18
, pp. 421-438
-
-
Terui, N.1
Van Dijk, H.K.2
-
40
-
-
51749094894
-
Forecasts of US short-term interest rates: a flexible forecast combination approach
-
Federal Reserve Bank of St. Louis Working Papers Series
-
Guidolin, M., Timmermann, A., Forecasts of US short-term interest rates: a flexible forecast combination approach. 2007 Federal Reserve Bank of St. Louis Working Papers Series.
-
(2007)
-
-
Guidolin, M.1
Timmermann, A.2
-
41
-
-
77949261436
-
Combined modeling for electric load forecasting with adaptive particle swarm optimization
-
Wang, J.Z., Zhu, S.L., Zhang, W.Y., Lu, H.Y., Combined modeling for electric load forecasting with adaptive particle swarm optimization. Energy 35:4 (2010), 1671–1678, 10.1016/j.energy.2009.12.015.
-
(2010)
Energy
, vol.35
, Issue.4
, pp. 1671-1678
-
-
Wang, J.Z.1
Zhu, S.L.2
Zhang, W.Y.3
Lu, H.Y.4
-
42
-
-
85041663879
-
Forecasting the Coke price based on the Kalman filtering algorithm
-
Meifeng, Z., Guohao, Z., Forecasting the Coke price based on the Kalman filtering algorithm. J Resour Ecol 6:1 (2015), 60–64.
-
(2015)
J Resour Ecol
, vol.6
, Issue.1
, pp. 60-64
-
-
Meifeng, Z.1
Guohao, Z.2
-
43
-
-
0037243071
-
Time series forecasting using a hybrid ARIMA and neural network model
-
Zhang, G.P., Time series forecasting using a hybrid ARIMA and neural network model. Neurocomputing 50 (2003), 159–175.
-
(2003)
Neurocomputing
, vol.50
, pp. 159-175
-
-
Zhang, G.P.1
-
44
-
-
84961143388
-
Combination of forecasts for the price of crude oil on the spot market
-
Azevedo, V.G., Campos, L.M.S., Combination of forecasts for the price of crude oil on the spot market. Int J Prod Res 54:17 (2016), 5219–5235, 10.1080/00207543.2016.1162340.
-
(2016)
Int J Prod Res
, vol.54
, Issue.17
, pp. 5219-5235
-
-
Azevedo, V.G.1
Campos, L.M.S.2
-
45
-
-
0039296325
-
A new look at models for exponential smoothing
-
Chatfield, C., Koehler, A.B., Ord, J.K., Snyder, R.D., A new look at models for exponential smoothing. Statistica 50 (2001), 147–159.
-
(2001)
Statistica
, vol.50
, pp. 147-159
-
-
Chatfield, C.1
Koehler, A.B.2
Ord, J.K.3
Snyder, R.D.4
-
46
-
-
0003123930
-
Forecasting with artificial neural networks: the state of the art
-
Zhang, G., Patuwo, B.E., Hu, M.Y., Forecasting with artificial neural networks: the state of the art. Int J Forecast 14 (1998), 35–62.
-
(1998)
Int J Forecast
, vol.14
, pp. 35-62
-
-
Zhang, G.1
Patuwo, B.E.2
Hu, M.Y.3
-
47
-
-
70349453596
-
An artificial neural network (p,d,q) model for time series forecasting
-
Khashei, M., Bijari, M., An artificial neural network (p,d,q) model for time series forecasting. Expert Syst Appl 37 (2010), 479–489.
-
(2010)
Expert Syst Appl
, vol.37
, pp. 479-489
-
-
Khashei, M.1
Bijari, M.2
-
48
-
-
78650981315
-
Introductory time series with R
-
Springer-Verlag New York
-
Cowpertwait, P.S.P., Metcalfe, A.V., Introductory time series with R. 2009, Springer-Verlag, New York.
-
(2009)
-
-
Cowpertwait, P.S.P.1
Metcalfe, A.V.2
-
49
-
-
84938943386
-
Time series forecasting using hybrid ARIMA and ANN models based on DWT decomposition
-
Khandelwal, I., Adhikari, R., Verma, G., Time series forecasting using hybrid ARIMA and ANN models based on DWT decomposition. Procedia Comput Sci 48 (2015), 173–179.
-
(2015)
Procedia Comput Sci
, vol.48
, pp. 173-179
-
-
Khandelwal, I.1
Adhikari, R.2
Verma, G.3
|