메뉴 건너뛰기




Volumn 56, Issue , 2017, Pages 692-701

LSSVR ensemble learning with uncertain parameters for crude oil price forecasting

Author keywords

Crude oil price forecasting; Ensemble learning; Least squares support vector regression (LSSVR); Optimization under uncertainty; Parameter selection; Uncertain variable

Indexed keywords

COSTS; CRUDE OIL; FORECASTING; PARAMETER ESTIMATION; PROBABILITY; UNCERTAINTY ANALYSIS;

EID: 84992364628     PISSN: 15684946     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.asoc.2016.09.023     Document Type: Article
Times cited : (73)

References (22)
  • 1
    • 84908020500 scopus 로고    scopus 로고
    • A compressed sensing based AI learning paradigm for crude oil price forecasting
    • Yu, L., Zhao, Y., Tang, L., A compressed sensing based AI learning paradigm for crude oil price forecasting. Energy Econ. 46 (2014), 236–245.
    • (2014) Energy Econ. , vol.46 , pp. 236-245
    • Yu, L.1    Zhao, Y.2    Tang, L.3
  • 2
    • 84938709928 scopus 로고    scopus 로고
    • A novel hybrid Grid-GA based LSSVR learning paradigm for international crude oil price forecasting
    • Yu, L., Dai, W., Tang, L., Wu, J.Q., A novel hybrid Grid-GA based LSSVR learning paradigm for international crude oil price forecasting. Neural Comput. Appl., 2015, 10.1007/s00521-015-1999-4.
    • (2015) Neural Comput. Appl.
    • Yu, L.1    Dai, W.2    Tang, L.3    Wu, J.Q.4
  • 3
    • 84862159796 scopus 로고    scopus 로고
    • Modelling energy spot prices: empirical evidence from NYMEX
    • Nomikos, N., Andriosopoulos, K., Modelling energy spot prices: empirical evidence from NYMEX. Energy Econ. 34 (2012), 1153–1169.
    • (2012) Energy Econ. , vol.34 , pp. 1153-1169
    • Nomikos, N.1    Andriosopoulos, K.2
  • 4
    • 56949091216 scopus 로고    scopus 로고
    • Forecasting oil price movements with crack spread futures
    • Murat, A., Tokat, E., Forecasting oil price movements with crack spread futures. Energy Econ. 31 (2009), 85–90.
    • (2009) Energy Econ. , vol.31 , pp. 85-90
    • Murat, A.1    Tokat, E.2
  • 5
    • 28444476220 scopus 로고    scopus 로고
    • Modeling and forecasting cointegrated relationships among heavy oil and product prices
    • Lanza, A., Manera, M., Giovannini, M., Modeling and forecasting cointegrated relationships among heavy oil and product prices. Energy Econ. 27 (2005), 831–848.
    • (2005) Energy Econ. , vol.27 , pp. 831-848
    • Lanza, A.1    Manera, M.2    Giovannini, M.3
  • 6
    • 79959377599 scopus 로고    scopus 로고
    • Forecasting the differences between various commercial oil prices in the Persian Gulf region by neural network
    • Movagharnejad, K., Mehdizadeh, B., Banihashemi, M., Masoud, S.K., Forecasting the differences between various commercial oil prices in the Persian Gulf region by neural network. Energy 36 (2011), 3979–3984.
    • (2011) Energy , vol.36 , pp. 3979-3984
    • Movagharnejad, K.1    Mehdizadeh, B.2    Banihashemi, M.3    Masoud, S.K.4
  • 7
    • 84876514715 scopus 로고    scopus 로고
    • Crude oil price prediction based on a dynamic correcting support vector regression machine
    • Li, S., Ge, Y., Crude oil price prediction based on a dynamic correcting support vector regression machine. Abstr. Appl. Anal., 2013, 1–7.
    • (2013) Abstr. Appl. Anal. , pp. 1-7
    • Li, S.1    Ge, Y.2
  • 8
    • 84875190144 scopus 로고    scopus 로고
    • Hybrid approaches based on LSSVR model for container throughput forecasting: a comparative study
    • Xie, G., Wang, S., Zhao, Y., Lai, K.K., Hybrid approaches based on LSSVR model for container throughput forecasting: a comparative study. Appl. Soft Comput. 13 (2013), 2232–2241.
    • (2013) Appl. Soft Comput. , vol.13 , pp. 2232-2241
    • Xie, G.1    Wang, S.2    Zhao, Y.3    Lai, K.K.4
  • 9
    • 70649108732 scopus 로고    scopus 로고
    • Weighted least squares support vector machine local region method for nonlinear time series prediction
    • Quan, T., Liu, X., Liu, Q., Weighted least squares support vector machine local region method for nonlinear time series prediction. Appl. Soft Comput. 10 (2010), 562–566.
    • (2010) Appl. Soft Comput. , vol.10 , pp. 562-566
    • Quan, T.1    Liu, X.2    Liu, Q.3
  • 10
    • 78751627947 scopus 로고    scopus 로고
    • SVR with hybrid chaotic genetic algorithms for tourism demand
    • Hong, W.C., Dong, Y., Chen, L.Y., Wei, S.Y., SVR with hybrid chaotic genetic algorithms for tourism demand. Appl. Soft Comput. 11 (2011), 1881–1890.
    • (2011) Appl. Soft Comput. , vol.11 , pp. 1881-1890
    • Hong, W.C.1    Dong, Y.2    Chen, L.Y.3    Wei, S.Y.4
  • 11
    • 84961830073 scopus 로고    scopus 로고
    • Optimal placement and sizing of voltage controlled distributed generators in unbalanced distribution networks using supervised firefly algorithm
    • Othman, M.M., El-Khattam, W., Hegazy, Y.G., Abdelaziz, A.Y., Optimal placement and sizing of voltage controlled distributed generators in unbalanced distribution networks using supervised firefly algorithm. Electr. Power Energy Syst. 82 (2016), 105–113.
    • (2016) Electr. Power Energy Syst. , vol.82 , pp. 105-113
    • Othman, M.M.1    El-Khattam, W.2    Hegazy, Y.G.3    Abdelaziz, A.Y.4
  • 12
    • 84891616845 scopus 로고    scopus 로고
    • Hybrid PSO–SVM method for short-term load forecasting during periods with significant temperature variations in city of Burbank
    • Selakov, A., Cvijetinović, D., Milović, L., Mellon, S., Bekut, D., Hybrid PSO–SVM method for short-term load forecasting during periods with significant temperature variations in city of Burbank. Appl. Soft Comput. 16 (2014), 80–88.
    • (2014) Appl. Soft Comput. , vol.16 , pp. 80-88
    • Selakov, A.1    Cvijetinović, D.2    Milović, L.3    Mellon, S.4    Bekut, D.5
  • 13
    • 84909641265 scopus 로고    scopus 로고
    • Probabilistic prediction of green roof energy performance under parameter uncertainty
    • Liu, M.M., Probabilistic prediction of green roof energy performance under parameter uncertainty. Energy 77 (2014), 667–674.
    • (2014) Energy , vol.77 , pp. 667-674
    • Liu, M.M.1
  • 14
    • 84905750068 scopus 로고    scopus 로고
    • Uncertainty handling using neural network-based prediction intervals for electrical load forecasting
    • Quan, H., Srinivasan, D., Khosravi, A., Uncertainty handling using neural network-based prediction intervals for electrical load forecasting. Energy 73 (2014), 916–925.
    • (2014) Energy , vol.73 , pp. 916-925
    • Quan, H.1    Srinivasan, D.2    Khosravi, A.3
  • 15
    • 0032638628 scopus 로고    scopus 로고
    • Least squares support vector machine classifiers
    • Suykens, J.A.K., Vandewalle, J., Least squares support vector machine classifiers. Neural Process Lett. 9 (1999), 293–300.
    • (1999) Neural Process Lett. , vol.9 , pp. 293-300
    • Suykens, J.A.K.1    Vandewalle, J.2
  • 16
    • 0037822222 scopus 로고    scopus 로고
    • Asymptotic behaviors of support vector machines with Gaussian kernel
    • Keerthi, S.S., Lin, C.J., Asymptotic behaviors of support vector machines with Gaussian kernel. Neural Comput. 15 (2003), 1667–1689.
    • (2003) Neural Comput. , vol.15 , pp. 1667-1689
    • Keerthi, S.S.1    Lin, C.J.2
  • 17
    • 84959341302 scopus 로고    scopus 로고
    • A simple method to achieve a uniform flux distribution in a multi-faceted point focus concertrator
    • Perez-Enciso, R., Dallo Carlos, A., Perez-Rabago, A simple method to achieve a uniform flux distribution in a multi-faceted point focus concertrator. Renew. Energy 93 (2016), 115–124.
    • (2016) Renew. Energy , vol.93 , pp. 115-124
    • Perez-Enciso, R.1    Dallo Carlos, A.2    Perez-Rabago3
  • 18
    • 84961566783 scopus 로고    scopus 로고
    • A characterization of the normal distribution by the independence of a pair of random vectors
    • doi:.
    • Ejsmont, W., A characterization of the normal distribution by the independence of a pair of random vectors, Stat. Probab. Lett. doi: http://dx.doi.org/10.1016/j.spl.2016.02.011.
    • Stat. Probab. Lett.
    • Ejsmont, W.1
  • 19
    • 84952334033 scopus 로고    scopus 로고
    • Random lsing antiferromagnet on Bethe-like lattices with triangular loops
    • Yokota, T., Random lsing antiferromagnet on Bethe-like lattices with triangular loops. Phys. A: Stat. Mech. Appl. 447 (2016), 270–275.
    • (2016) Phys. A: Stat. Mech. Appl. , vol.447 , pp. 270-275
    • Yokota, T.1
  • 20
    • 55549146101 scopus 로고    scopus 로고
    • Credit scoring using support vector machines with direct search for parameters selection
    • Lai, K.K., Zhou, L., Yu, L., Credit scoring using support vector machines with direct search for parameters selection. Soft Comput. 13 (2009), 149–155.
    • (2009) Soft Comput. , vol.13 , pp. 149-155
    • Lai, K.K.1    Zhou, L.2    Yu, L.3
  • 21
    • 84943366754 scopus 로고    scopus 로고
    • A novel mode-characteristic-based decomposition ensemble model for nuclear energy consumption forecasting
    • Tang, L., Wang, S., He, K.J., Wang, S.Y., A novel mode-characteristic-based decomposition ensemble model for nuclear energy consumption forecasting. Ann. Oper. Res. 234 (2015), 111–132.
    • (2015) Ann. Oper. Res. , vol.234 , pp. 111-132
    • Tang, L.1    Wang, S.2    He, K.J.3    Wang, S.Y.4
  • 22
    • 84956633257 scopus 로고    scopus 로고
    • The MLE of the mean of the exponential distribution based on grouped data is stochastically increasing
    • Nowak, P.B., The MLE of the mean of the exponential distribution based on grouped data is stochastically increasing. Stat. Probab. Lett. 111 (2016), 49–54.
    • (2016) Stat. Probab. Lett. , vol.111 , pp. 49-54
    • Nowak, P.B.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.