메뉴 건너뛰기




Volumn 650, Issue , 2016, Pages 19-41

Predicting financial time series data using hybrid model

Author keywords

[No Author keywords available]

Indexed keywords


EID: 84991795024     PISSN: 1860949X     EISSN: None     Source Type: Book Series    
DOI: 10.1007/978-3-319-33386-1_2     Document Type: Article
Times cited : (22)

References (47)
  • 2
    • 61349086648 scopus 로고    scopus 로고
    • Stock market prediction of S&P 500 via combination of improved bco approach and bp neural network
    • Yudong, Z., Lenan W.: Stock market prediction of S&P 500 via combination of improved bco approach and bp neural network. Expert Syst. Appl. 36(5), pp. 805-818 (2009)
    • (2009) Expert Syst. Appl , vol.36 , Issue.5 , pp. 805-818
    • Yudong, Z.1    Lenan, W.2
  • 3
    • 84866488723 scopus 로고    scopus 로고
    • Hybridization of evolutionary Levenberg-Marquardt neural networks and data pre-processing for stock market prediction
    • Asadi, S., Hadavandi, E., Mehmanpazir, F., Nakhostin, M.M.: Hybridization of evolutionary Levenberg-Marquardt neural networks and data pre-processing for stock market prediction. Knowl. Based Syst. 35, 245-258 (2012)
    • (2012) Knowl. Based Syst , vol.35 , pp. 245-258
    • Asadi, S.1    Hadavandi, E.2    Mehmanpazir, F.3    Nakhostin, M.M.4
  • 5
    • 0000860595 scopus 로고    scopus 로고
    • Neural network models for time series forecasts
    • Hill, T., O’Connor, M., Remus, W.: Neural network models for time series forecasts. Manag. Sci. 42(7), 1082-1092 (1996)
    • (1996) Manag. Sci , vol.42 , Issue.7 , pp. 1082-1092
    • Hill, T.1    O’Connor, M.2    Remus, W.3
  • 6
    • 12444272695 scopus 로고    scopus 로고
    • AHybrid Genetic-neural Architecture for Stock Indexes Forecasting. Inf
    • Armano, G., Marchesi, M., Murru, A.:AHybrid Genetic-neural Architecture for Stock Indexes Forecasting. Inf. Sci. 170(1), 3-33 (2005)
    • (2005) Sci , vol.170 , Issue.1 , pp. 3-33
    • Armano, G.1    Marchesi, M.2    Murru, A.3
  • 8
    • 84881627430 scopus 로고    scopus 로고
    • Support vector regression with chaos-based firefly algorithm for stock market price forecasting
    • Kazem, A., Sharifi, E., Hussain, F.K., Saberi, M., Hussain, O.K.: Support vector regression with chaos-based firefly algorithm for stock market price forecasting. Appl. Soft Comput. 13(2), 947-958 (2013)
    • (2013) Appl. Soft Comput , vol.13 , Issue.2 , pp. 947-958
    • Kazem, A.1    Sharifi, E.2    Hussain, F.K.3    Saberi, M.4    Hussain, O.K.5
  • 9
    • 77249122037 scopus 로고    scopus 로고
    • Time series forecasting by a seasonal support vector regression model
    • Pai, P.-F., Lin, K.-P., Lin, C.-S., Chang, P.-T.: Time series forecasting by a seasonal support vector regression model. Expert Syst. Appl. 37(6), 4261-4265 (2010)
    • (2010) Expert Syst. Appl , vol.37 , Issue.6 , pp. 4261-4265
    • Pai, P.-F.1    Lin, K.-P.2    Lin, C.-S.3    Chang, P.-T.4
  • 10
    • 84963852614 scopus 로고    scopus 로고
    • A novel hybrid ensemble model to predict FTSE100 index by combining neural network and EEMD
    • IEEE, New York
    • Al-Hnaity, B., Abbod, M.: A novel hybrid ensemble model to predict FTSE100 index by combining neural network and EEMD. In: 2015 European Control Conference (ECC), pp. 3021-3028. IEEE, New York (2015)
    • (2015) 2015 European Control Conference (ECC) , pp. 3021-3028
    • Al-Hnaity, B.1    Abbod, M.2
  • 11
    • 0342505598 scopus 로고
    • Combining forecasts: The end of the beginning or the beginning of the end?
    • Armstrong, J.S.: Combining forecasts: the end of the beginning or the beginning of the end? int. j. forecast. 5(4), 585-588 (1989)
    • (1989) Int. J. Forecast. , vol.5 , Issue.4 , pp. 585-588
    • Armstrong, J.S.1
  • 14
    • 33745952342 scopus 로고    scopus 로고
    • 25 years of time series forecasting
    • Gooijer, D., Jan, G., Hyndman, R.J.: 25 years of time series forecasting. Int. J. Forecast. 22(3), 443-473 (2006)
    • (2006) Int. J. Forecast. , vol.22 , Issue.3 , pp. 443-473
    • Gooijer, D.1    Jan, G.2    Hyndman, R.J.3
  • 15
    • 0031701777 scopus 로고    scopus 로고
    • A bootstrap evaluation of the effect of data splitting on financial time series
    • IEEE, New York
    • LeBaron, B., Weigend, A.S.: A bootstrap evaluation of the effect of data splitting on financial time series. In: IEEE Transactions on Neural Networks, vol. 9(1), pp. 213-220. IEEE, New York (1998)
    • (1998) IEEE Transactions on Neural Networks , vol.9 , Issue.1 , pp. 213-220
    • Lebaron, B.1    Weigend, A.S.2
  • 16
    • 58149472216 scopus 로고    scopus 로고
    • Design of experiments on neural network’s training for nonlinear time series forecasting
    • Balestrassi, P.P., Popova, E., de Paiva, A.P., Lima, J.W.M.: Design of experiments on neural network’s training for nonlinear time series forecasting. Neurocomputing 72(4), 1160-1178 (2009)
    • (2009) Neurocomputing , vol.72 , Issue.4 , pp. 1160-1178
    • Balestrassi, P.P.1    Popova, E.2    De Paiva, A.P.3    Lima, J.W.M.4
  • 17
    • 53949114438 scopus 로고    scopus 로고
    • A hybrid ARIMA and artificial neural networks model to forecast particulate matter in urban areas: The case of Temuco
    • Diaz-Robles, L.A., Ortega, J.C., Fu, J.S., Reed, G.D., Chow, J.C., Watson, J.G., Moncada-Herrera, J.A.: A hybrid ARIMA and artificial neural networks model to forecast particulate matter in urban areas: the case of Temuco, Chile. Atmos. Environ. 42(35) 8331-8340 (2008)
    • (2008) Chile. Atmos. Environ , vol.42 , Issue.35 , pp. 8331-8340
    • Diaz-Robles, L.A.1    Ortega, J.C.2    Fu, J.S.3    Reed, G.D.4    Chow, J.C.5    Watson, J.G.6    Moncada-Herrera, J.A.7
  • 19
    • 84858745887 scopus 로고    scopus 로고
    • Stock index forecasting based on a hybrid model
    • Wang, J-J., Wang, J-Z., Zhang, Z-G., Guo, S.-P.: Stock index forecasting based on a hybrid model. Omega 40(6), 758-766 (2012)
    • (2012) Omega , vol.40 , Issue.6 , pp. 758-766
    • Wang, J.-J.1    Wang, J.-Z.2    Zhang, Z.-G.3    Guo, S.-P.4
  • 20
    • 77950516820 scopus 로고    scopus 로고
    • A hybrid neural network and ARIMA model for water quality time series prediction
    • Faruk, D.Ö.: A hybrid neural network and ARIMA model for water quality time series prediction. Eng. Appl. Artif. Intell. 23(4):586-594 (2010)
    • (2010) Eng. Appl. Artif. Intell , vol.23 , Issue.4 , pp. 586-594
    • Faruk, D.Ö.1
  • 21
    • 34249753618 scopus 로고
    • Support-vector Networks
    • Springer, Heidelberg
    • Cortes, C., Vapnik, V.: Support-vector Networks. In: Machine Learning, vol. 20(3), pp. 273-297. Springer, Heidelberg (1995)
    • (1995) Machine Learning , vol.20 , Issue.3 , pp. 273-297
    • Cortes, C.1    Vapnik, V.2
  • 22
    • 0032523506 scopus 로고    scopus 로고
    • Properties of support vector machines
    • MIT Press, Cambridge
    • Pontil, M., Verri, A.: Properties of support vector machines. In: Neural Computation, vol. 10(4), pp. 955-974. MIT Press, Cambridge (1998)
    • (1998) Neural Computation , vol.10 , Issue.4 , pp. 955-974
    • Pontil, M.1    Verri, A.2
  • 25
    • 0346250790 scopus 로고    scopus 로고
    • Practical selection of SVM parameters and noise estimation for SVM regression
    • Cherkassky, V., Ma, Y.: Practical selection of SVM parameters and noise estimation for SVM regression. Neural Netw. 17(1), 113-126 (2004)
    • (2004) Neural Netw , vol.17 , Issue.1 , pp. 113-126
    • Cherkassky, V.1    Ma, Y.2
  • 26
    • 0001023715 scopus 로고    scopus 로고
    • Application of support vector machines in financial time series forecasting
    • Tay, F.E.H., Cao, L.: Application of support vector machines in financial time series forecasting. Omega, 29(4), 309-317 (2001)
    • (2001) Omega , vol.29 , Issue.4 , pp. 309-317
    • Tay, F.E.H.1    Cao, L.2
  • 27
    • 0742268991 scopus 로고    scopus 로고
    • Support vector machine with adaptive parameters in financial time series forecasting
    • Cao, L.-J., Tay, F.E.H.: Support vector machine with adaptive parameters in financial time series forecasting. IEEE Trans. Neural Netw. 14(6), 1506-1518 (2003)
    • (2003) IEEE Trans. Neural Netw , vol.14 , Issue.6 , pp. 1506-1518
    • Cao, L.-J.1    Tay, F.E.H.2
  • 29
    • 84894039372 scopus 로고    scopus 로고
    • Modeling and trading FTSE100 index using a novel sliding window approach which combines adaptive differential evolution and support vector regression
    • Springer, Heidelberg
    • Theofilatos, K., Karathanasopoulos, A., Middleton, P., Georgopoulos, E., Likothanassis, S.: Modeling and trading FTSE100 index using a novel sliding window approach which combines adaptive differential evolution and support vector regression. In: Artificial Intelligence Applications and Innovations, pp. 486-496. Springer, Heidelberg (2013)
    • (2013) Artificial Intelligence Applications and Innovations , pp. 486-496
    • Theofilatos, K.1    Karathanasopoulos, A.2    Middleton, P.3    Georgopoulos, E.4    Likothanassis, S.5
  • 31
    • 0030193984 scopus 로고    scopus 로고
    • Introduction to financial forecasting
    • Springer, Heidelberg
    • Abu-Mostafa, Y.S., Atiya, A.F.: Introduction to financial forecasting. In: Applied Intelligence, vol. 6(3), pp. 205-213. Springer, Heidelberg (1996)
    • (1996) Applied Intelligence, Vol. 6(3) , pp. 205-213
    • Abu-Mostafa, Y.S.1    Atiya, A.F.2
  • 32
    • 0037243071 scopus 로고    scopus 로고
    • Time series forecasting using a hybrid ARIMA and neural network model
    • Zhang, G.P.: Time series forecasting using a hybrid ARIMA and neural network model. Neurocomputing 50, 159-175 (2003)
    • (2003) Neurocomputing , vol.50 , pp. 159-175
    • Zhang, G.P.1
  • 33
    • 84945797974 scopus 로고
    • What is the bestmethod of forecasting
    • Chatfield, C.: What is the bestmethod of forecasting. J. Appl. Stat. 15(1), 19-38 (1988)
    • (1988) J. Appl. Stat , vol.15 , Issue.1 , pp. 19-38
    • Chatfield, C.1
  • 34
    • 0023312713 scopus 로고
    • Combination of forecasts: An extension
    • Gupta, S., Wilton, P.C.: Combination of forecasts: an extension. Manag. Sci. 33(3), 356-372 (1987)
    • (1987) Manag. Sci , vol.33 , Issue.3 , pp. 356-372
    • Gupta, S.1    Wilton, P.C.2
  • 39
    • 0037185691 scopus 로고    scopus 로고
    • Using genetic algorithms to parameters (D, r) estimation for threshold autoregressive models
    • Wu, B., Chang, C.-L.: Using genetic algorithms to parameters (d, r) estimation for threshold autoregressive models. Comput. Stat. Data Anal. 38(3), 315-330 (2002)
    • (2002) Comput. Stat. Data Anal , vol.38 , Issue.3 , pp. 315-330
    • Wu, B.1    Chang, C.-L.2
  • 40
    • 85014149758 scopus 로고    scopus 로고
    • Concepts and Techniques: Concepts and Techniques. Elsevier
    • Han, J., Kamber, M., Pei, J.: Data Mining: Concepts and Techniques: Concepts and Techniques. Elsevier (2011)
    • (2011) Data Mining
    • Han, J.1    Kamber, M.2    Pei, J.3
  • 42
    • 0003962862 scopus 로고    scopus 로고
    • Principles of Forecasting: A Handbook for Researchers and Practitioners
    • Springer, Heidelberg
    • Armstrong, J.S.: Principles of Forecasting: A Handbook for Researchers and Practitioners. Science and Business Media, vol. 30. Springer, Heidelberg (2001)
    • (2001) Science and Business Media , vol.30
    • Armstrong, J.S.1
  • 43
    • 33749517168 scopus 로고    scopus 로고
    • Another Look at Measures of Forecast Accuracy
    • Hyndman, R.J., Koehler, A.B.: Another Look at Measures of Forecast Accuracy. Int. J. Forecast. 22(4), 679-688 (2006)
    • (2006) Int. J. Forecast , vol.22 , Issue.4 , pp. 679-688
    • Hyndman, R.J.1    Koehler, A.B.2
  • 44
    • 84923354640 scopus 로고    scopus 로고
    • Forecasting stock market indexes using principle component analysis and stochastic time effective neural network
    • Wang, J., Wang, J.: Forecasting stock market indexes using principle component analysis and stochastic time effective neural network. Neurocomputing 156, 68-78 (2015)
    • (2015) Neurocomputing , vol.156 , pp. 68-78
    • Wang, J.1    Wang, J.2
  • 45
    • 13544258711 scopus 로고    scopus 로고
    • A comparison between Fama and French’s model and artificial neural networks in predicting the Chinese stock market
    • Cao, Q., Leggio, K.B., Schniederjans, M.J.: A comparison between Fama and French’s model and artificial neural networks in predicting the Chinese stock market. Comput. Oper. Res. 32(10), 2499-2512 (2005)
    • (2005) Comput. Oper. Res , vol.32 , Issue.10 , pp. 2499-2512
    • Cao, Q.1    Leggio, K.B.2    Schniederjans, M.J.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.