메뉴 건너뛰기




Volumn 14, Issue 1, 2018, Pages

GSimp: A Gibbs sampler based left-censored missing value imputation approach for metabolomics studies

Author keywords

[No Author keywords available]

Indexed keywords

DATA HANDLING; ITERATIVE METHODS; LARGE DATASET; MULTIVARIANT ANALYSIS;

EID: 85041401127     PISSN: 1553734X     EISSN: 15537358     Source Type: Journal    
DOI: 10.1371/journal.pcbi.1005973     Document Type: Article
Times cited : (100)

References (34)
  • 3
    • 84860380628 scopus 로고    scopus 로고
    • Missing values in mass spectrometry based metabolomics: An undervalued step in the data processing pipeline
    • Hrydziuszko O, Viant MR, Missing values in mass spectrometry based metabolomics: An undervalued step in the data processing pipeline. Metabolomics. 2012;8: 161–174. doi: 10.1007/s11306-011-0366-4
    • (2012) Metabolomics , vol.8 , pp. 161-174
    • Hrydziuszko, O.1    Viant, M.R.2
  • 4
    • 84940974070 scopus 로고    scopus 로고
    • Plasma metabolomic profiles enhance precision medicine for volunteers of normal health
    • 2628334
    • Guo L, Milburn M V, Ryals JA, Lonergan SC, Mitchell MW, Wulff JE, et al. Plasma metabolomic profiles enhance precision medicine for volunteers of normal health. Proc Natl Acad Sci. 2015;112: E4901–E4910. doi: 10.1073/pnas.1508425112 26283345
    • (2015) Proc Natl Acad Sci , vol.112 , pp. E4901-E4910
    • Guo, L.1    Milburn, M.V.2    Ryals, J.A.3    Lonergan, S.C.4    Mitchell, M.W.5    Wulff, J.E.6
  • 5
    • 85024867141 scopus 로고    scopus 로고
    • Profiling of plasma metabolites suggests altered mitochondrial fuel usage and remodelling of sphingolipid metabolism in individuals with type 2 diabetes and kidney disease
    • 2914297
    • Liu J-J, Ghosh S, Kovalik J-P, Ching J, Choi HW, Tavintharan S, et al. Profiling of plasma metabolites suggests altered mitochondrial fuel usage and remodelling of sphingolipid metabolism in individuals with type 2 diabetes and kidney disease. Kidney Int Reports. 2016;2: 470–480. doi: 10.1016/j.ekir.2016.12.003 29142974
    • (2016) Kidney Int Reports , vol.2 , pp. 470-480
    • Liu, J.-J.1    Ghosh, S.2    Kovalik, J.-P.3    Ching, J.4    Choi, H.W.5    Tavintharan, S.6
  • 6
    • 84938686905 scopus 로고    scopus 로고
    • Global metabolomic profiling targeting childhood obesity in the Hispanic population
    • 2608551
    • Butte NF, Liu Y, Zakeri IF, Mohney RP, Mehta N, Voruganti VS, et al. Global metabolomic profiling targeting childhood obesity in the Hispanic population. Am J Clin Nutr. 2015;102: 256–267. doi: 10.3945/ajcn.115.111872 26085512
    • (2015) Am J Clin Nutr , vol.102 , pp. 256-267
    • Butte, N.F.1    Liu, Y.2    Zakeri, I.F.3    Mohney, R.P.4    Mehta, N.5    Voruganti, V.S.6
  • 8
    • 85041427474 scopus 로고    scopus 로고
    • .,.; –. Div Biostat Stanford Uni
    • Hastie T, Tibshirani R, Sherlock G, Imputing missing data for gene expression arrays. Tech Report, Div Biostat Stanford Univ. 1999; 1–9.
    • (1999) Tech Report , pp. 1-9
    • Hastie, T.1    Tibshirani, R.2    Sherlock, G.3
  • 9
    • 34249847958 scopus 로고    scopus 로고
    • pcaMethods—A bioconductor package providing PCA methods for incomplete data
    • 1734424
    • Stacklies W, Redestig H, Scholz M, Walther D, Selbig J, pcaMethods—A bioconductor package providing PCA methods for incomplete data. Bioinformatics. 2007;23: 1164–1167. doi: 10.1093/bioinformatics/btm069 17344241
    • (2007) Bioinformatics , vol.23 , pp. 1164-1167
    • Stacklies, W.1    Redestig, H.2    Scholz, M.3    Walther, D.4    Selbig, J.5
  • 10
    • 84855177476 scopus 로고    scopus 로고
    • Missforest-Non-parametric missing value imputation for mixed-type data
    • 2203921
    • Stekhoven DJ, Bühlmann P, Missforest-Non-parametric missing value imputation for mixed-type data. Bioinformatics. 2012;28: 112–118. doi: 10.1093/bioinformatics/btr597 22039212
    • (2012) Bioinformatics , vol.28 , pp. 112-118
    • Stekhoven, D.J.1    Bühlmann, P.2
  • 11
    • 84891788820 scopus 로고    scopus 로고
    • MetaboLyzer: A novel statistical workflow for analyzing postprocessed LC-MS metabolomics data
    • 2426667
    • Mak TD, Laiakis EC, Goudarzi M, Fornace AJ, MetaboLyzer: A novel statistical workflow for analyzing postprocessed LC-MS metabolomics data. Anal Chem. 2014;86: 506–513. doi: 10.1021/ac402477z 24266674
    • (2014) Anal Chem , vol.86 , pp. 506-513
    • Mak, T.D.1    Laiakis, E.C.2    Goudarzi, M.3    Fornace, A.J.4
  • 12
    • 33644867564 scopus 로고    scopus 로고
    • MZmine: toolbox for processing and visualization of mass spectrometry based molecular profile data
    • 1640379
    • Katajamaa M, Miettinen J, Oresic M, MZmine: toolbox for processing and visualization of mass spectrometry based molecular profile data. Bioinformatics. 2006;22: 634–6. doi: 10.1093/bioinformatics/btk039 16403790
    • (2006) Bioinformatics , vol.22 , pp. 634-636
    • Katajamaa, M.1    Miettinen, J.2    Oresic, M.3
  • 14
    • 84858145016 scopus 로고    scopus 로고
    • TagFinder: Preprocessing software for the fingerprinting and the profiling of gas chromatography-mass spectrometry based metabolome analyses
    • 2235118
    • Luedemann A, Von Malotky L, Erban A, Kopka J, TagFinder: Preprocessing software for the fingerprinting and the profiling of gas chromatography-mass spectrometry based metabolome analyses. Methods Mol Biol. 2012;860: 255–286. doi: 10.1007/978-1-61779-594-7_16 22351182
    • (2012) Methods Mol Biol , vol.860 , pp. 255-286
    • Luedemann, A.1    Von Malotky, L.2    Erban, A.3    Kopka, J.4
  • 15
    • 84979865433 scopus 로고    scopus 로고
    • MetaboAnalyst 3.0-making metabolomics more meaningful
    • 2589712
    • Xia J, Sinelnikov I V, Han B, Wishart DS, MetaboAnalyst 3.0-making metabolomics more meaningful. Nucleic Acids Res. 2015;43: W251–W257. doi: 10.1093/nar/gkv380 25897128
    • (2015) Nucleic Acids Res , vol.43 , pp. W251-W257
    • Xia, J.1    Sinelnikov, I.V.2    Han, B.3    Wishart, D.S.4
  • 16
    • 67849106535 scopus 로고    scopus 로고
    • MetaboAnalyst: A web server for metabolomic data analysis and interpretation
    • 1942989
    • Xia J, Psychogios N, Young N, Wishart DS, MetaboAnalyst: A web server for metabolomic data analysis and interpretation. Nucleic Acids Res. 2009;37. doi: 10.1093/nar/gkp356 19429898
    • (2009) Nucleic Acids Res , pp. 37
    • Xia, J.1    Psychogios, N.2    Young, N.3    Wishart, D.S.4
  • 17
    • 84864479791 scopus 로고    scopus 로고
    • MetaboAnalyst 2.0-a comprehensive server for metabolomic data analysis
    • 2255336
    • Xia J, Mandal R, Sinelnikov I V, Broadhurst D, Wishart DS, MetaboAnalyst 2.0-a comprehensive server for metabolomic data analysis. Nucleic Acids Res. 2012;40. doi: 10.1093/nar/gks374 22553367
    • (2012) Nucleic Acids Res , pp. 40
    • Xia, J.1    Mandal, R.2    Sinelnikov, V.3    Broadhurst, D.4    Wishart, D.S.5
  • 18
    • 84963706086 scopus 로고    scopus 로고
    • Accounting for the Multiple Natures of Missing Values in Label-Free Quantitative Proteomics Data Sets to Compare Imputation Strategies
    • 2690640
    • Lazar C, Gatto L, Ferro M, Bruley C, Burger T, Accounting for the Multiple Natures of Missing Values in Label-Free Quantitative Proteomics Data Sets to Compare Imputation Strategies. J Proteome Res. 2016;15: 1116–1125. doi: 10.1021/acs.jproteome.5b00981 26906401
    • (2016) J Proteome Res , vol.15 , pp. 1116-1125
    • Lazar, C.1    Gatto, L.2    Ferro, M.3    Bruley, C.4    Burger, T.5
  • 19
    • 85013249518 scopus 로고    scopus 로고
    • Distribution based nearest neighbor imputation for truncated high dimensional data with applications to pre-clinical and clinical metabolomics studies
    • 2821934
    • Shah JS, Rai SN, DeFilippis AP, Hill BG, Bhatnagar A, Brock GN, Distribution based nearest neighbor imputation for truncated high dimensional data with applications to pre-clinical and clinical metabolomics studies. BMC Bioinformatics. 2017;18: 114. doi: 10.1186/s12859-017-1547-6 28219348
    • (2017) BMC Bioinformatics , vol.18 , pp. 114
    • Shah, J.S.1    Rai, S.N.2    DeFilippis, A.P.3    Hill, B.G.4    Bhatnagar, A.5    Brock, G.N.6
  • 21
    • 84951906223 scopus 로고    scopus 로고
    • Circulating Unsaturated Fatty Acids Delineate the Metabolic Status of Obese Individuals
    • 2662954
    • Ni Y, Zhao L, Yu H, Ma X, Bao Y, Rajani C, et al. Circulating Unsaturated Fatty Acids Delineate the Metabolic Status of Obese Individuals. EBioMedicine. 2015;2: 1513–1522. doi: 10.1016/j.ebiom.2015.09.004 26629547
    • (2015) EBioMedicine , vol.2 , pp. 1513-1522
    • Ni, Y.1    Zhao, L.2    Yu, H.3    Ma, X.4    Bao, Y.5    Rajani, C.6
  • 22
    • 85028947750 scopus 로고    scopus 로고
    • The ratio of dihomo-γ-linolenic acid to deoxycholic acid species is a potential biomarker for the metabolic abnormalities in obesity
    • 28490483,.. Federation of American Societies for Experimental Biology;; fj.201700055R
    • Lei S, Huang F, Zhao A, Chen T, Chen W, Xie G, et al. The ratio of dihomo-γ-linolenic acid to deoxycholic acid species is a potential biomarker for the metabolic abnormalities in obesity. FASEB J. Federation of American Societies for Experimental Biology; 2017; fj.201700055R. doi: 10.1096/fj.201700055R 28490483
    • (2017) FASEB J
    • Lei, S.1    Huang, F.2    Zhao, A.3    Chen, T.4    Chen, W.5    Xie, G.6
  • 23
    • 16244401458 scopus 로고    scopus 로고
    • Regularization and variable selection via the elastic net
    • Zou H, Hastie T, Regularization and variable selection via the elastic net. J R Stat Soc Ser B Stat Methodol. 2005;67: 301–320. doi: 10.1111/j.1467-9868.2005.00503.x
    • (2005) J R Stat Soc Ser B Stat Methodol , vol.67 , pp. 301-320
    • Zou, H.1    Hastie, T.2
  • 25
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • Breiman L, Random forests. Mach Learn. 2001;45: 5–32. doi: 10.1023/A:1010933404324
    • (2001) Mach Learn , vol.45 , pp. 5-32
    • Breiman, L.1
  • 26
    • 0001287271 scopus 로고    scopus 로고
    • Regression Selection and Shrinkage via the Lasso [Internet]
    • .. p
    • Tibshirani R, Regression Selection and Shrinkage via the Lasso [Internet]. Journal of the Royal Statistical Society B. 1996. pp. 267–288. doi: 10.2307/2346178
    • (1996) Journal of the Royal Statistical Society B , pp. 267-288
    • Tibshirani, R.1
  • 27
    • 84942484786 scopus 로고
    • Ridge Regression: Biased Estimation for Nonorthogonal Problems
    • Hoerl AE, Kennard RW, Ridge Regression: Biased Estimation for Nonorthogonal Problems. Technometrics. 1970;12: 55–67. doi: 10.1080/00401706.1970.10488634
    • (1970) Technometrics , vol.12 , pp. 55-67
    • Hoerl, A.E.1    Kennard, R.W.2
  • 29
    • 85041423222 scopus 로고    scopus 로고
    • Lazar C. Imputation of left-censored missing data using QRILC method [Internet]. 2015
    • Lazar C. Imputation of left-censored missing data using QRILC method [Internet]. 2015.
  • 30
    • 0242643743 scopus 로고    scopus 로고
    • A Bayesian missing value estimation method for gene expression profile data
    • 1459471
    • Oba S, Sato M -a., Takemasa I, Monden M, Matsubara K -i., Ishii S, A Bayesian missing value estimation method for gene expression profile data. Bioinformatics. 2003;19: 2088–2096. doi: 10.1093/bioinformatics/btg287 14594714
    • (2003) Bioinformatics , vol.19 , pp. 2088-2096
    • Oba, S.1    Sato, M.2    Takemasa, I.3    Monden, M.4    Matsubara, K.5    Ishii, S.6
  • 31
    • 85040601018 scopus 로고    scopus 로고
    • Missing Value Imputation Approach for Mass Spectrometry-based Metabolomics Data
    • 2933053
    • Wei R, Wang J, Su M, Jia E, Chen S, Chen T, et al. Missing Value Imputation Approach for Mass Spectrometry-based Metabolomics Data. Sci Rep. 2018;8: 663. doi: 10.1038/s41598-017-19120-0 29330539
    • (2018) Sci Rep , vol.8 , pp. 663
    • Wei, R.1    Wang, J.2    Su, M.3    Jia, E.4    Chen, S.5    Chen, T.6
  • 32
    • 84865191980 scopus 로고    scopus 로고
    • Statistical Shape Analysis
    • Dryden IL, Mardia K V, Statistical Shape Analysis. J Hum Evol. 1998;4: 376. doi: 10.1006/jhev.1999.0391
    • (1998) J Hum Evol , vol.4 , pp. 376
    • Dryden, I.L.1    Mardia, V.2
  • 33
    • 85041429357 scopus 로고    scopus 로고
    • Oksanen J. Multivariate Analysis of Ecological Communities in R: vegan tutorial [Internet]. 2015
    • Oksanen J. Multivariate Analysis of Ecological Communities in R: vegan tutorial [Internet]. 2015.
  • 34
    • 84938818771 scopus 로고    scopus 로고
    • Analysis of the Human Adult Urinary Metabolome Variations with Age, Body Mass Index, and Gender by Implementing a Comprehensive Workflow for Univariate and OPLS Statistical Analyses
    • 2608881
    • Thévenot EA, Roux A, Xu Y, Ezan E, Junot C, Analysis of the Human Adult Urinary Metabolome Variations with Age, Body Mass Index, and Gender by Implementing a Comprehensive Workflow for Univariate and OPLS Statistical Analyses. J Proteome Res. 2015;14: 3322–3335. doi: 10.1021/acs.jproteome.5b00354 26088811
    • (2015) J Proteome Res , vol.14 , pp. 3322-3335
    • Thévenot, E.A.1    Roux, A.2    Xu, Y.3    Ezan, E.4    Junot, C.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.