메뉴 건너뛰기




Volumn 8, Issue 1, 2018, Pages

Missing Value Imputation Approach for Mass Spectrometry-based Metabolomics Data

Author keywords

[No Author keywords available]

Indexed keywords

CORRELATION ANALYSIS; DECOMPOSITION; HAWAII; HUMAN; K NEAREST NEIGHBOR; MASS SPECTROMETRY; METABOLOMICS; PARTIAL LEAST SQUARES REGRESSION; PRINCIPAL COMPONENT ANALYSIS; RANDOM FOREST; SOFTWARE; STUDENT; STUDENT T TEST; UNIVARIATE ANALYSIS; BIOLOGY; CLUSTER ANALYSIS; LEAST SQUARE ANALYSIS; PROCEDURES;

EID: 85040601018     PISSN: None     EISSN: 20452322     Source Type: Journal    
DOI: 10.1038/s41598-017-19120-0     Document Type: Article
Times cited : (428)

References (34)
  • 1
    • 33846000626 scopus 로고    scopus 로고
    • Mass spectrometry-based metabolomics
    • Dettmer, K., Aronov, P. A. & Hammock, B. D. Mass spectrometry-based metabolomics. Mass Spectrom Rev 26, 51-78, https://doi.org/10.1002/mas.20108 (2007).
    • (2007) Mass Spectrom Rev , vol.26 , pp. 51-78
    • Dettmer, K.1    Aronov, P.A.2    Hammock, B.D.3
  • 2
    • 30744460897 scopus 로고    scopus 로고
    • Large-scale human metabolomics studies: A strategy for data (pre-) processing and validation
    • Bijlsma, S. et al. Large-scale human metabolomics studies: A strategy for data (pre-) processing and validation. Analytical Chemistry 78, 567-574, https://doi.org/10.1021/ac051495j (2006).
    • (2006) Analytical Chemistry , vol.78 , pp. 567-574
    • Bijlsma, S.1
  • 3
    • 84860380628 scopus 로고    scopus 로고
    • Missing values in mass spectrometry based metabolomics: An undervalued step in the data processing pipeline
    • Hrydziuszko, O. & Viant, M. R. Missing values in mass spectrometry based metabolomics: an undervalued step in the data processing pipeline. Metabolomics 8, 161-174, https://doi.org/10.1007/s11306-011-0366-4 (2012).
    • (2012) Metabolomics , vol.8 , pp. 161-174
    • Hrydziuszko, O.1    Viant, M.R.2
  • 6
    • 84963706086 scopus 로고    scopus 로고
    • Accounting for the Multiple Natures of Missing Values in Label-Free Quantitative Proteomics Data Sets to Compare Imputation Strategies
    • Lazar, C., Gatto, L., Ferro, M., Bruley, C. & Burger, T. Accounting for the Multiple Natures of Missing Values in Label-Free Quantitative Proteomics Data Sets to Compare Imputation Strategies. Journal of Proteome Research 15, 1116-1125, https://doi.org/10.1021/acs.jproteome.5b00981 (2016).
    • (2016) Journal of Proteome Research , vol.15 , pp. 1116-1125
    • Lazar, C.1    Gatto, L.2    Ferro, M.3    Bruley, C.4    Burger, T.5
  • 7
    • 84878053091 scopus 로고    scopus 로고
    • Normalization and missing value imputation for label-free LC-MS analysis
    • Karpievitch, Y. V., Dabney, A. R. & Smith, R. D. Normalization and missing value imputation for label-free LC-MS analysis. Bmc Bioinformatics 13, S5, https://doi.org/10.1186/1471-2105-13-S16-S5 (2012).
    • (2012) Bmc Bioinformatics , vol.13 , pp. S5
    • Karpievitch, Y.V.1    Dabney, A.R.2    Smith, R.D.3
  • 8
    • 84922653598 scopus 로고    scopus 로고
    • Profiling of serum bile acids in a healthy Chinese population using UPLC-MS/MS
    • Xie, G. et al. Profiling of serum bile acids in a healthy Chinese population using UPLC-MS/MS. J Proteome Res 14, 850-859, https://doi.org/10.1021/pr500920q (2015).
    • (2015) J Proteome Res , vol.14 , pp. 850-859
    • Xie, G.1
  • 9
    • 32444446805 scopus 로고    scopus 로고
    • XCMS: Processing mass spectrometry data for metabolite profiling using nonlinear peak alignment, matching, and identification
    • Smith, C. A., Want, E. J., O'Maille, G., Abagyan, R. & Siuzdak, G. XCMS: processing mass spectrometry data for metabolite profiling using nonlinear peak alignment, matching, and identification. Anal Chem 78, 779-787, https://doi.org/10.1021/ac051437y (2006).
    • (2006) Anal Chem , vol.78 , pp. 779-787
    • Smith, C.A.1    Want, E.J.2    O'Maille, G.3    Abagyan, R.4    Siuzdak, G.5
  • 10
    • 84985993575 scopus 로고    scopus 로고
    • ADAP-GC 3.0: Improved Peak Detection and Deconvolution of Co-eluting Metabolites from GC/TOF-MS Data for Metabolomics Studies
    • Ni, Y., Su, M., Qiu, Y., Jia, W. & Du, X. ADAP-GC 3.0: Improved Peak Detection and Deconvolution of Co-eluting Metabolites from GC/TOF-MS Data for Metabolomics Studies. Anal Chem 88, 8802-8811, https://doi.org/10.1021/acs.analchem.6b02222 (2016).
    • (2016) Anal Chem , vol.88 , pp. 8802-8811
    • Ni, Y.1    Su, M.2    Qiu, Y.3    Jia, W.4    Du, X.5
  • 11
    • 84995547307 scopus 로고    scopus 로고
    • A data preprocessing strategy for metabolomics to reduce the mask effect in data analysis
    • Yang, J., Zhao, X., Lu, X., Lin, X. & Xu, G. A data preprocessing strategy for metabolomics to reduce the mask effect in data analysis. Frontiers in molecular biosciences 2, 4, https://doi.org/10.3389/fmolb.2015.00004 (2015).
    • (2015) Frontiers in Molecular Biosciences , vol.2 , pp. 4
    • Yang, J.1    Zhao, X.2    Lu, X.3    Lin, X.4    Xu, G.5
  • 12
    • 84888141577 scopus 로고    scopus 로고
    • Accounting for undetected compounds in statistical analyses of mass spectrometry 'omic studies
    • Taylor, S. L., Leiserowitz, G. S. & Kim, K. Accounting for undetected compounds in statistical analyses of mass spectrometry 'omic studies. Stat Appl Genet Mol 12, 703-722, https://doi.org/10.1515/sagmb-2013-0021 (2013).
    • (2013) Stat Appl Genet Mol , vol.12 , pp. 703-722
    • Taylor, S.L.1    Leiserowitz, G.S.2    Kim, K.3
  • 13
    • 84928745729 scopus 로고    scopus 로고
    • Kernel approaches for differential expression analysis of mass spectrometry-based metabolomics data
    • Zhan, X., Patterson, A. D. & Ghosh, D. Kernel approaches for differential expression analysis of mass spectrometry-based metabolomics data. Bmc Bioinformatics 16, 77, https://doi.org/10.1186/s12859-015-0506-3 (2015).
    • (2015) Bmc Bioinformatics , vol.16 , pp. 77
    • Zhan, X.1    Patterson, A.D.2    Ghosh, D.3
  • 14
    • 0034960264 scopus 로고    scopus 로고
    • Missing value estimation methods for DNA microarrays
    • Troyanskaya, O. et al. Missing value estimation methods for DNA microarrays. Bioinformatics (Oxford, England) 17, 520-525, https://doi.org/10.1093/bioinformatics/17.6.520 (2001).
    • (2001) Bioinformatics (Oxford, England) , vol.17 , pp. 520-525
    • Troyanskaya, O.1
  • 15
    • 84855177476 scopus 로고    scopus 로고
    • Missforest-Non-parametric missing value imputation for mixed-type data
    • Stekhoven, D. J. & Bühlmann, P. Missforest-Non-parametric missing value imputation for mixed-type data. Bioinformatics 28, 112-118, https://doi.org/10.1093/bioinformatics/btr597 (2012).
    • (2012) Bioinformatics , vol.28 , pp. 112-118
    • Stekhoven, D.J.1    Bühlmann, P.2
  • 17
    • 84897366826 scopus 로고    scopus 로고
    • MeltDB 2.0-advances of the metabolomics software system
    • Kessler, N. et al. MeltDB 2.0-advances of the metabolomics software system. Bioinformatics 29, 2452-2459, https://doi.org/10.1093/bioinformatics/btt414 (2013).
    • (2013) Bioinformatics , vol.29 , pp. 2452-2459
    • Kessler, N.1
  • 18
    • 84858145016 scopus 로고    scopus 로고
    • TagFinder: Preprocessing software for the fingerprinting and the profiling of gas chromatography-mass spectrometry based metabolome analyses
    • Luedemann, A., von Malotky, L., Erban, A. & Kopka, J. TagFinder: preprocessing software for the fingerprinting and the profiling of gas chromatography-mass spectrometry based metabolome analyses. Methods Mol Biol 860, 255-286, https://doi.org/10.1007/978-1-61779-594-7-16 (2012).
    • (2012) Methods Mol Biol , vol.860 , pp. 255-286
    • Luedemann, A.1    Von Malotky, L.2    Erban, A.3    Kopka, J.4
  • 19
    • 84979865433 scopus 로고    scopus 로고
    • MetaboAnalyst 3.0-making metabolomics more meaningful
    • Xia, J., Sinelnikov, I. V., Han, B. & Wishart, D. S. MetaboAnalyst 3.0-making metabolomics more meaningful. Nucleic Acids Res 43, W251-257, https://doi.org/10.1093/nar/gkv380 (2015).
    • (2015) Nucleic Acids Res , vol.43 , pp. W251-257
    • Xia, J.1    Sinelnikov, I.V.2    Han, B.3    Wishart, D.S.4
  • 20
    • 33644867564 scopus 로고    scopus 로고
    • MZmine: Toolbox for processing and visualization of mass spectrometry based molecular profile data
    • Katajamaa, M., Miettinen, J. & Oresic, M. MZmine: toolbox for processing and visualization of mass spectrometry based molecular profile data. Bioinformatics 22, 634-636, https://doi.org/10.1093/bioinformatics/btk039 (2006).
    • (2006) Bioinformatics , vol.22 , pp. 634-636
    • Katajamaa, M.1    Miettinen, J.2    Oresic, M.3
  • 21
    • 84891788820 scopus 로고    scopus 로고
    • MetaboLyzer: A novel statistical workflow for analyzing Postprocessed LC-MS metabolomics data
    • Mak, T. D., Laiakis, E. C., Goudarzi, M. & Fornace, A. J. Jr. MetaboLyzer: a novel statistical workflow for analyzing Postprocessed LC-MS metabolomics data. Anal Chem 86, 506-513, https://doi.org/10.1021/ac402477z (2014).
    • (2014) Anal Chem , vol.86 , pp. 506-513
    • Mak, T.D.1    Laiakis, E.C.2    Goudarzi, M.3    Fornace, A.J.4
  • 22
    • 67849106535 scopus 로고    scopus 로고
    • MetaboAnalyst: A web server for metabolomic data analysis and interpretation
    • Xia, J., Psychogios, N., Young, N. & Wishart, D. S. MetaboAnalyst: a web server for metabolomic data analysis and interpretation. Nucleic Acids Res 37, W652-660, https://doi.org/10.1093/nar/gkp356 (2009).
    • (2009) Nucleic Acids Res , vol.37 , pp. W652-660
    • Xia, J.1    Psychogios, N.2    Young, N.3    Wishart, D.S.4
  • 23
    • 84922426331 scopus 로고    scopus 로고
    • Counting Missing Values in a Metabolite-Intensity Data Set for Measuring the Analytical Performance of a Metabolomics Platform
    • Huan, T. & Li, L. Counting Missing Values in a Metabolite-Intensity Data Set for Measuring the Analytical Performance of a Metabolomics Platform. Anal. Chem. 87, 1306-1313, https://doi.org/10.1021/ac5039994 (2015).
    • (2015) Anal. Chem. , vol.87 , pp. 1306-1313
    • Huan, T.1    Li, L.2
  • 25
    • 84919904749 scopus 로고    scopus 로고
    • Influence of missing values substitutes on multivariate analysis of metabolomics data
    • Gromski, P. S. et al. Influence of missing values substitutes on multivariate analysis of metabolomics data. Metabolites 4, 433-452, https://doi.org/10.3390/metabo4020433 (2014).
    • (2014) Metabolites , vol.4 , pp. 433-452
    • Gromski, P.S.1
  • 26
    • 84963799935 scopus 로고    scopus 로고
    • Non-targeted UHPLC-MS metabolomic data processing methods: A comparative investigation of normalisation, missing value imputation, transformation and scaling
    • Di Guida, R. et al. Non-targeted UHPLC-MS metabolomic data processing methods: a comparative investigation of normalisation, missing value imputation, transformation and scaling. Metabolomics 12, 93, https://doi.org/10.1007/s11306-016-1030-9 (2016).
    • (2016) Metabolomics , vol.12 , pp. 93
    • Di Guida, R.1
  • 28
    • 84951906223 scopus 로고    scopus 로고
    • Circulating Unsaturated Fatty Acids Delineate the Metabolic Status of Obese Individuals
    • Ni, Y. et al. Circulating Unsaturated Fatty Acids Delineate the Metabolic Status of Obese Individuals. EBioMedicine 2, 1513-1522, https://doi.org/10.1016/j.ebiom.2015.09.004 (2015).
    • (2015) EBioMedicine , vol.2 , pp. 1513-1522
    • Ni, Y.1
  • 29
    • 85028947750 scopus 로고    scopus 로고
    • The ratio of dihomo-gamma-linolenic acid to deoxycholic acid species is a potential biomarker for the metabolic abnormalities in obesity
    • Lei, S. et al. The ratio of dihomo-gamma-linolenic acid to deoxycholic acid species is a potential biomarker for the metabolic abnormalities in obesity. Faseb J 31, 3904-3912, https://doi.org/10.1096/fj.201700055R (2017).
    • (2017) Faseb J , vol.31 , pp. 3904-3912
    • Lei, S.1
  • 30
    • 84969659014 scopus 로고    scopus 로고
    • R Core Team R R Foundation for Statistical Computing, Vienna, Austria
    • R Core Team R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL http://www.R-project.org/(2013).
    • (2013) A Language and Environment for Statistical Computing
  • 31
    • 34249847958 scopus 로고    scopus 로고
    • PcaMethods-A bioconductor package providing PCA methods for incomplete data
    • Stacklies, W., Redestig, H., Scholz, M., Walther, D. & Selbig, J. pcaMethods-A bioconductor package providing PCA methods for incomplete data. Bioinformatics 23, 1164-1167, https://doi.org/10.1093/bioinformatics/btm069 (2007).
    • (2007) Bioinformatics , vol.23 , pp. 1164-1167
    • Stacklies, W.1    Redestig, H.2    Scholz, M.3    Walther, D.4    Selbig, J.5
  • 32
    • 0242643743 scopus 로고    scopus 로고
    • A Bayesian missing value estimation method for gene expression profile data
    • Oba, S. et al. A Bayesian missing value estimation method for gene expression profile data. Bioinformatics 19, 2088-2096, https://doi.org/10.1093/bioinformatics/btg287 (2003).
    • (2003) Bioinformatics , vol.19 , pp. 2088-2096
    • Oba, S.1
  • 34
    • 84938818771 scopus 로고    scopus 로고
    • Analysis of the Human Adult Urinary Metabolome Variations with Age, Body Mass Index, and Gender by Implementing a Comprehensive Workflow for Univariate and OPLS Statistical Analyses
    • Thévenot, E. A., Roux, A., Xu, Y., Ezan, E. & Junot, C. Analysis of the Human Adult Urinary Metabolome Variations with Age, Body Mass Index, and Gender by Implementing a Comprehensive Workflow for Univariate and OPLS Statistical Analyses. Journal of Proteome Research 14, 3322-3335, https://doi.org/10.1021/acs.jproteome.5b00354 (2015).
    • (2015) Journal of Proteome Research , vol.14 , pp. 3322-3335
    • Thévenot, E.A.1    Roux, A.2    Xu, Y.3    Ezan, E.4    Junot, C.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.