-
1
-
-
33846000626
-
Mass spectrometry-based metabolomics
-
Dettmer, K., Aronov, P. A. & Hammock, B. D. Mass spectrometry-based metabolomics. Mass Spectrom Rev 26, 51-78, https://doi.org/10.1002/mas.20108 (2007).
-
(2007)
Mass Spectrom Rev
, vol.26
, pp. 51-78
-
-
Dettmer, K.1
Aronov, P.A.2
Hammock, B.D.3
-
2
-
-
30744460897
-
Large-scale human metabolomics studies: A strategy for data (pre-) processing and validation
-
Bijlsma, S. et al. Large-scale human metabolomics studies: A strategy for data (pre-) processing and validation. Analytical Chemistry 78, 567-574, https://doi.org/10.1021/ac051495j (2006).
-
(2006)
Analytical Chemistry
, vol.78
, pp. 567-574
-
-
Bijlsma, S.1
-
3
-
-
84860380628
-
Missing values in mass spectrometry based metabolomics: An undervalued step in the data processing pipeline
-
Hrydziuszko, O. & Viant, M. R. Missing values in mass spectrometry based metabolomics: an undervalued step in the data processing pipeline. Metabolomics 8, 161-174, https://doi.org/10.1007/s11306-011-0366-4 (2012).
-
(2012)
Metabolomics
, vol.8
, pp. 161-174
-
-
Hrydziuszko, O.1
Viant, M.R.2
-
6
-
-
84963706086
-
Accounting for the Multiple Natures of Missing Values in Label-Free Quantitative Proteomics Data Sets to Compare Imputation Strategies
-
Lazar, C., Gatto, L., Ferro, M., Bruley, C. & Burger, T. Accounting for the Multiple Natures of Missing Values in Label-Free Quantitative Proteomics Data Sets to Compare Imputation Strategies. Journal of Proteome Research 15, 1116-1125, https://doi.org/10.1021/acs.jproteome.5b00981 (2016).
-
(2016)
Journal of Proteome Research
, vol.15
, pp. 1116-1125
-
-
Lazar, C.1
Gatto, L.2
Ferro, M.3
Bruley, C.4
Burger, T.5
-
7
-
-
84878053091
-
Normalization and missing value imputation for label-free LC-MS analysis
-
Karpievitch, Y. V., Dabney, A. R. & Smith, R. D. Normalization and missing value imputation for label-free LC-MS analysis. Bmc Bioinformatics 13, S5, https://doi.org/10.1186/1471-2105-13-S16-S5 (2012).
-
(2012)
Bmc Bioinformatics
, vol.13
, pp. S5
-
-
Karpievitch, Y.V.1
Dabney, A.R.2
Smith, R.D.3
-
8
-
-
84922653598
-
Profiling of serum bile acids in a healthy Chinese population using UPLC-MS/MS
-
Xie, G. et al. Profiling of serum bile acids in a healthy Chinese population using UPLC-MS/MS. J Proteome Res 14, 850-859, https://doi.org/10.1021/pr500920q (2015).
-
(2015)
J Proteome Res
, vol.14
, pp. 850-859
-
-
Xie, G.1
-
9
-
-
32444446805
-
XCMS: Processing mass spectrometry data for metabolite profiling using nonlinear peak alignment, matching, and identification
-
Smith, C. A., Want, E. J., O'Maille, G., Abagyan, R. & Siuzdak, G. XCMS: processing mass spectrometry data for metabolite profiling using nonlinear peak alignment, matching, and identification. Anal Chem 78, 779-787, https://doi.org/10.1021/ac051437y (2006).
-
(2006)
Anal Chem
, vol.78
, pp. 779-787
-
-
Smith, C.A.1
Want, E.J.2
O'Maille, G.3
Abagyan, R.4
Siuzdak, G.5
-
10
-
-
84985993575
-
ADAP-GC 3.0: Improved Peak Detection and Deconvolution of Co-eluting Metabolites from GC/TOF-MS Data for Metabolomics Studies
-
Ni, Y., Su, M., Qiu, Y., Jia, W. & Du, X. ADAP-GC 3.0: Improved Peak Detection and Deconvolution of Co-eluting Metabolites from GC/TOF-MS Data for Metabolomics Studies. Anal Chem 88, 8802-8811, https://doi.org/10.1021/acs.analchem.6b02222 (2016).
-
(2016)
Anal Chem
, vol.88
, pp. 8802-8811
-
-
Ni, Y.1
Su, M.2
Qiu, Y.3
Jia, W.4
Du, X.5
-
11
-
-
84995547307
-
A data preprocessing strategy for metabolomics to reduce the mask effect in data analysis
-
Yang, J., Zhao, X., Lu, X., Lin, X. & Xu, G. A data preprocessing strategy for metabolomics to reduce the mask effect in data analysis. Frontiers in molecular biosciences 2, 4, https://doi.org/10.3389/fmolb.2015.00004 (2015).
-
(2015)
Frontiers in Molecular Biosciences
, vol.2
, pp. 4
-
-
Yang, J.1
Zhao, X.2
Lu, X.3
Lin, X.4
Xu, G.5
-
12
-
-
84888141577
-
Accounting for undetected compounds in statistical analyses of mass spectrometry 'omic studies
-
Taylor, S. L., Leiserowitz, G. S. & Kim, K. Accounting for undetected compounds in statistical analyses of mass spectrometry 'omic studies. Stat Appl Genet Mol 12, 703-722, https://doi.org/10.1515/sagmb-2013-0021 (2013).
-
(2013)
Stat Appl Genet Mol
, vol.12
, pp. 703-722
-
-
Taylor, S.L.1
Leiserowitz, G.S.2
Kim, K.3
-
13
-
-
84928745729
-
Kernel approaches for differential expression analysis of mass spectrometry-based metabolomics data
-
Zhan, X., Patterson, A. D. & Ghosh, D. Kernel approaches for differential expression analysis of mass spectrometry-based metabolomics data. Bmc Bioinformatics 16, 77, https://doi.org/10.1186/s12859-015-0506-3 (2015).
-
(2015)
Bmc Bioinformatics
, vol.16
, pp. 77
-
-
Zhan, X.1
Patterson, A.D.2
Ghosh, D.3
-
14
-
-
0034960264
-
Missing value estimation methods for DNA microarrays
-
Troyanskaya, O. et al. Missing value estimation methods for DNA microarrays. Bioinformatics (Oxford, England) 17, 520-525, https://doi.org/10.1093/bioinformatics/17.6.520 (2001).
-
(2001)
Bioinformatics (Oxford, England)
, vol.17
, pp. 520-525
-
-
Troyanskaya, O.1
-
15
-
-
84855177476
-
Missforest-Non-parametric missing value imputation for mixed-type data
-
Stekhoven, D. J. & Bühlmann, P. Missforest-Non-parametric missing value imputation for mixed-type data. Bioinformatics 28, 112-118, https://doi.org/10.1093/bioinformatics/btr597 (2012).
-
(2012)
Bioinformatics
, vol.28
, pp. 112-118
-
-
Stekhoven, D.J.1
Bühlmann, P.2
-
16
-
-
0242638596
-
-
Technical Report, Division of Biostatistics, Stanford University
-
Hastie, T., Tibshirani, R. & Sherlock, G. Imputing missing data for gene expression arrays. Technical Report, Division of Biostatistics, Stanford University, 1-9 (1999).
-
(1999)
Imputing Missing Data for Gene Expression Arrays
, pp. 1-9
-
-
Hastie, T.1
Tibshirani, R.2
Sherlock, G.3
-
17
-
-
84897366826
-
MeltDB 2.0-advances of the metabolomics software system
-
Kessler, N. et al. MeltDB 2.0-advances of the metabolomics software system. Bioinformatics 29, 2452-2459, https://doi.org/10.1093/bioinformatics/btt414 (2013).
-
(2013)
Bioinformatics
, vol.29
, pp. 2452-2459
-
-
Kessler, N.1
-
18
-
-
84858145016
-
TagFinder: Preprocessing software for the fingerprinting and the profiling of gas chromatography-mass spectrometry based metabolome analyses
-
Luedemann, A., von Malotky, L., Erban, A. & Kopka, J. TagFinder: preprocessing software for the fingerprinting and the profiling of gas chromatography-mass spectrometry based metabolome analyses. Methods Mol Biol 860, 255-286, https://doi.org/10.1007/978-1-61779-594-7-16 (2012).
-
(2012)
Methods Mol Biol
, vol.860
, pp. 255-286
-
-
Luedemann, A.1
Von Malotky, L.2
Erban, A.3
Kopka, J.4
-
19
-
-
84979865433
-
MetaboAnalyst 3.0-making metabolomics more meaningful
-
Xia, J., Sinelnikov, I. V., Han, B. & Wishart, D. S. MetaboAnalyst 3.0-making metabolomics more meaningful. Nucleic Acids Res 43, W251-257, https://doi.org/10.1093/nar/gkv380 (2015).
-
(2015)
Nucleic Acids Res
, vol.43
, pp. W251-257
-
-
Xia, J.1
Sinelnikov, I.V.2
Han, B.3
Wishart, D.S.4
-
20
-
-
33644867564
-
MZmine: Toolbox for processing and visualization of mass spectrometry based molecular profile data
-
Katajamaa, M., Miettinen, J. & Oresic, M. MZmine: toolbox for processing and visualization of mass spectrometry based molecular profile data. Bioinformatics 22, 634-636, https://doi.org/10.1093/bioinformatics/btk039 (2006).
-
(2006)
Bioinformatics
, vol.22
, pp. 634-636
-
-
Katajamaa, M.1
Miettinen, J.2
Oresic, M.3
-
21
-
-
84891788820
-
MetaboLyzer: A novel statistical workflow for analyzing Postprocessed LC-MS metabolomics data
-
Mak, T. D., Laiakis, E. C., Goudarzi, M. & Fornace, A. J. Jr. MetaboLyzer: a novel statistical workflow for analyzing Postprocessed LC-MS metabolomics data. Anal Chem 86, 506-513, https://doi.org/10.1021/ac402477z (2014).
-
(2014)
Anal Chem
, vol.86
, pp. 506-513
-
-
Mak, T.D.1
Laiakis, E.C.2
Goudarzi, M.3
Fornace, A.J.4
-
22
-
-
67849106535
-
MetaboAnalyst: A web server for metabolomic data analysis and interpretation
-
Xia, J., Psychogios, N., Young, N. & Wishart, D. S. MetaboAnalyst: a web server for metabolomic data analysis and interpretation. Nucleic Acids Res 37, W652-660, https://doi.org/10.1093/nar/gkp356 (2009).
-
(2009)
Nucleic Acids Res
, vol.37
, pp. W652-660
-
-
Xia, J.1
Psychogios, N.2
Young, N.3
Wishart, D.S.4
-
23
-
-
84922426331
-
Counting Missing Values in a Metabolite-Intensity Data Set for Measuring the Analytical Performance of a Metabolomics Platform
-
Huan, T. & Li, L. Counting Missing Values in a Metabolite-Intensity Data Set for Measuring the Analytical Performance of a Metabolomics Platform. Anal. Chem. 87, 1306-1313, https://doi.org/10.1021/ac5039994 (2015).
-
(2015)
Anal. Chem.
, vol.87
, pp. 1306-1313
-
-
Huan, T.1
Li, L.2
-
24
-
-
84954398077
-
Missing value imputation strategies for metabolomics data
-
Armitage, E. G., Godzien, J., Alonso-Herranz, V., Lopez-Gonzalvez, A. & Barbas, C. Missing value imputation strategies for metabolomics data. Electrophoresis 36, 3050-3060, https://doi.org/10.1002/elps.201500352 (2015).
-
(2015)
Electrophoresis
, vol.36
, pp. 3050-3060
-
-
Armitage, E.G.1
Godzien, J.2
Alonso-Herranz, V.3
Lopez-Gonzalvez, A.4
Barbas, C.5
-
25
-
-
84919904749
-
Influence of missing values substitutes on multivariate analysis of metabolomics data
-
Gromski, P. S. et al. Influence of missing values substitutes on multivariate analysis of metabolomics data. Metabolites 4, 433-452, https://doi.org/10.3390/metabo4020433 (2014).
-
(2014)
Metabolites
, vol.4
, pp. 433-452
-
-
Gromski, P.S.1
-
26
-
-
84963799935
-
Non-targeted UHPLC-MS metabolomic data processing methods: A comparative investigation of normalisation, missing value imputation, transformation and scaling
-
Di Guida, R. et al. Non-targeted UHPLC-MS metabolomic data processing methods: a comparative investigation of normalisation, missing value imputation, transformation and scaling. Metabolomics 12, 93, https://doi.org/10.1007/s11306-016-1030-9 (2016).
-
(2016)
Metabolomics
, vol.12
, pp. 93
-
-
Di Guida, R.1
-
28
-
-
84951906223
-
Circulating Unsaturated Fatty Acids Delineate the Metabolic Status of Obese Individuals
-
Ni, Y. et al. Circulating Unsaturated Fatty Acids Delineate the Metabolic Status of Obese Individuals. EBioMedicine 2, 1513-1522, https://doi.org/10.1016/j.ebiom.2015.09.004 (2015).
-
(2015)
EBioMedicine
, vol.2
, pp. 1513-1522
-
-
Ni, Y.1
-
29
-
-
85028947750
-
The ratio of dihomo-gamma-linolenic acid to deoxycholic acid species is a potential biomarker for the metabolic abnormalities in obesity
-
Lei, S. et al. The ratio of dihomo-gamma-linolenic acid to deoxycholic acid species is a potential biomarker for the metabolic abnormalities in obesity. Faseb J 31, 3904-3912, https://doi.org/10.1096/fj.201700055R (2017).
-
(2017)
Faseb J
, vol.31
, pp. 3904-3912
-
-
Lei, S.1
-
30
-
-
84969659014
-
-
R Core Team R R Foundation for Statistical Computing, Vienna, Austria
-
R Core Team R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL http://www.R-project.org/(2013).
-
(2013)
A Language and Environment for Statistical Computing
-
-
-
31
-
-
34249847958
-
PcaMethods-A bioconductor package providing PCA methods for incomplete data
-
Stacklies, W., Redestig, H., Scholz, M., Walther, D. & Selbig, J. pcaMethods-A bioconductor package providing PCA methods for incomplete data. Bioinformatics 23, 1164-1167, https://doi.org/10.1093/bioinformatics/btm069 (2007).
-
(2007)
Bioinformatics
, vol.23
, pp. 1164-1167
-
-
Stacklies, W.1
Redestig, H.2
Scholz, M.3
Walther, D.4
Selbig, J.5
-
32
-
-
0242643743
-
A Bayesian missing value estimation method for gene expression profile data
-
Oba, S. et al. A Bayesian missing value estimation method for gene expression profile data. Bioinformatics 19, 2088-2096, https://doi.org/10.1093/bioinformatics/btg287 (2003).
-
(2003)
Bioinformatics
, vol.19
, pp. 2088-2096
-
-
Oba, S.1
-
34
-
-
84938818771
-
Analysis of the Human Adult Urinary Metabolome Variations with Age, Body Mass Index, and Gender by Implementing a Comprehensive Workflow for Univariate and OPLS Statistical Analyses
-
Thévenot, E. A., Roux, A., Xu, Y., Ezan, E. & Junot, C. Analysis of the Human Adult Urinary Metabolome Variations with Age, Body Mass Index, and Gender by Implementing a Comprehensive Workflow for Univariate and OPLS Statistical Analyses. Journal of Proteome Research 14, 3322-3335, https://doi.org/10.1021/acs.jproteome.5b00354 (2015).
-
(2015)
Journal of Proteome Research
, vol.14
, pp. 3322-3335
-
-
Thévenot, E.A.1
Roux, A.2
Xu, Y.3
Ezan, E.4
Junot, C.5
|