메뉴 건너뛰기




Volumn 51, Issue 1, 2018, Pages

HPC cloud for scientific and business applications: Taxonomy, vision, and research challenges

Author keywords

Advisory systems; Big data; Charging models; High performance computing; HPC cloud; Parallel applications; Resource allocation

Indexed keywords

BIG DATA; COST BENEFIT ANALYSIS; DISTRIBUTED COMPUTER SYSTEMS; ECONOMICS; RESOURCE ALLOCATION; TAXONOMIES;

EID: 85040654697     PISSN: 03600300     EISSN: 15577341     Source Type: Journal    
DOI: 10.1145/3150224     Document Type: Article
Times cited : (146)

References (126)
  • 4
    • 85025675323 scopus 로고    scopus 로고
    • Retrieved December 5, 2017
    • Amazon. 2017a. Amazon Web Services. Retrieved December 5, 2017, from https://aws.amazon.com.
    • (2017) Amazon Web Services
  • 5
    • 85025675323 scopus 로고    scopus 로고
    • Retrieved December 5, 2017
    • Amazon. 2017b. Amazon Web Services (HPC). Retrieved December 5, 2017, from https://aws.amazon.com/hpc/.
    • (2017) Amazon Web Services (HPC)
  • 11
    • 85132920445 scopus 로고    scopus 로고
    • The Role of Cloud Computing Architecture in Big Data
    • Mehdi Bahrami and Mukesh Singhal. 2015. The Role of Cloud Computing Architecture in Big Data. Springer International Publishing, 275–295.
    • (2015) Springer International Publishing , pp. 275-295
    • Bahrami, M.1    Singhal, M.2
  • 14
    • 79952026579 scopus 로고    scopus 로고
    • Microbenchmark
    • L. Liu and T. Ozsu (Eds.). Springer, Boston, MA
    • Denilson Barbosa, Ioana Manolescu, and Jeffrey Xu Yu. 2009. Microbenchmark. In Encyclopedia of Database Systems, L. Liu and T. Ozsu (Eds.). Springer, Boston, MA, 1737.
    • (2009) Encyclopedia of Database Systems , pp. 1737
    • Barbosa, D.1    Manolescu, I.2    Yu, J.X.3
  • 15
    • 84908431309 scopus 로고    scopus 로고
    • A hybrid HPC/cloud distributed infrastructure: Coupling EC2 cloud resources with HPC clusters to run large tightly coupled multiscale applications
    • Mohamed Ben Belgacem and Bastien Chopard. 2015. A hybrid HPC/cloud distributed infrastructure: Coupling EC2 cloud resources with HPC clusters to run large tightly coupled multiscale applications. Future Generation Computer Systems 42, 11–21.
    • (2015) Future Generation Computer Systems , vol.42 , pp. 11-21
    • Belgacem, M.B.1    Chopard, B.2
  • 23
    • 63649117166 scopus 로고    scopus 로고
    • Cloud computing and emerging IT platforms: Vision, hype, and reality for delivering computing as the 5th utility
    • Rajkumar Buyya, Chee Shin Yeo, Srikumar Venugopal, James Broberg, and Ivona Brandic. 2009. Cloud computing and emerging IT platforms: Vision, hype, and reality for delivering computing as the 5th utility. Future Generation Computer Systems 25, 6, 599–616.
    • (2009) Future Generation Computer Systems , vol.25 , Issue.6 , pp. 599-616
    • Buyya, R.1    Yeo, C.S.2    Venugopal, S.3    Broberg, J.4    Brandic, I.5
  • 28
    • 84908403090 scopus 로고    scopus 로고
    • Exposing HPC and sequential applications as services through the development and deployment of a SaaS cloud
    • Philip Church, Andrzej Goscinski, and Christophe Lefvre. 2015. Exposing HPC and sequential applications as services through the development and deployment of a SaaS cloud. Future Generation Computer Systems 4344, 0, 24–37.
    • (2015) Future Generation Computer Systems , vol.4344 , pp. 24-37
    • Church, P.1    Goscinski, A.2    Lefvre, C.3
  • 30
    • 84919708312 scopus 로고    scopus 로고
    • A survey of cloud-based service computing solutions for mammalian genomics
    • Philip C. Church and Andrzej M. Goscinski. 2014. A survey of cloud-based service computing solutions for mammalian genomics. IEEE Transactions on Services Computing 7, 4, 726–740.
    • (2014) IEEE Transactions on Services Computing , vol.7 , Issue.4 , pp. 726-740
    • Church, P.C.1    Goscinski, A.M.2
  • 36
    • 37549003336 scopus 로고    scopus 로고
    • MapReduce: Simplified data processing on large clusters
    • Jeffrey Dean and Sanjay Ghemawat. 2008. MapReduce: Simplified data processing on large clusters. Communications of the ACM 51, 1, 107–113.
    • (2008) Communications of The ACM , vol.51 , Issue.1 , pp. 107-113
    • Dean, J.1    Ghemawat, S.2
  • 41
    • 74349095095 scopus 로고    scopus 로고
    • Cloud computing for parallel scientific HPC applications: Feasibility of running coupled atmosphere-ocean climate models on Amazon’s EC2
    • C. Evangelinos and C. Hill. 2008. Cloud computing for parallel scientific HPC applications: Feasibility of running coupled atmosphere-ocean climate models on Amazon’s EC2. In Proceedings of the Workshop on Cloud Computing and Its Applications (CCA’08).
    • (2008) Proceedings of The Workshop on Cloud Computing and Its Applications (CCA’08)
    • Evangelinos, C.1    Hill, C.2
  • 49
    • 84985032748 scopus 로고    scopus 로고
    • An analysis of public clouds elasticity in the execution of scientific applications: A survey
    • Guilherme Galante, Luis Carlos Erpen De Bona, Antonio Roberto Mury, Bruno Schulze, and Rodrigo da Rosa Righi. 2016. An analysis of public clouds elasticity in the execution of scientific applications: A survey. Journal of Grid Computing 14, 2, 193–216.
    • (2016) Journal of Grid Computing , vol.14 , Issue.2 , pp. 193-216
    • Galante, G.1    De Bona, L.C.E.2    Mury, A.R.3    Schulze, B.4    Da Rosa Righi, R.5
  • 51
    • 85040668085 scopus 로고    scopus 로고
    • General Accountability Office. Retrieved December 5, 2017
    • General Accountability Office. 2013. GAO Protest Decision B-407073.3. Retrieved December 5, 2017, from http://www.gao.gov/assets/660/655241.pdf.
    • (2013) GAO Protest Decision B-407073.3
  • 55
    • 0030243005 scopus 로고    scopus 로고
    • A high-performance, portable implementation of the MPI message passing interface standard
    • William Gropp, Ewing Lusk, Nathan Doss, and Anthony Skjellum. 1996. A high-performance, portable implementation of the MPI message passing interface standard. Parallel Computing 22, 6, 789–828.
    • (1996) Parallel Computing , vol.22 , Issue.6 , pp. 789-828
    • Gropp, W.1    Lusk, E.2    Doss, N.3    Skjellum, A.4
  • 62
    • 84947595555 scopus 로고    scopus 로고
    • Scalability and communication performance of HPC on Azure Cloud
    • Hanan A. Hassan, Shimaa A. Mohamed, and Walaa M. Sheta. 2015. Scalability and communication performance of HPC on Azure Cloud. Egyptian Informatics Journal 17, 2, 175–182.
    • (2015) Egyptian Informatics Journal , vol.17 , Issue.2 , pp. 175-182
    • Hassan, H.A.1    Mohamed, S.A.2    Sheta, W.M.3
  • 63
    • 84969718725 scopus 로고    scopus 로고
    • Improving HPC application performance in public cloud
    • Rashid Hassani, Md Aiatullah, and Peter Luksch. 2014. Improving HPC application performance in public cloud. IERI Pro-cedia 10, 169–176.
    • (2014) IERI Pro-Cedia , vol.10 , pp. 169-176
    • Hassani, R.1    Aiatullah, M.2    Luksch, P.3
  • 65
    • 77749323131 scopus 로고    scopus 로고
    • A quantitative analysis of high performance computing with Amazon’s EC2 infrastructure: The death of the local cluster?
    • IEEE, Los Alamitos, CA
    • Zach Hill and Marty Humphrey. 2009. A quantitative analysis of high performance computing with Amazon’s EC2 infrastructure: The death of the local cluster? In Proceedings of the 10th IEEE/ACM International Conference on Grid Computing. IEEE, Los Alamitos, CA.
    • (2009) Proceedings of The 10th IEEE/ACM International Conference on Grid Computing
    • Hill, Z.1    Humphrey, M.2
  • 66
    • 84903520802 scopus 로고    scopus 로고
    • Development of a SaaS application probe to the physical properties of the Earth’s interior: An attempt at moving HPC to the cloud
    • Qian Huang. 2014. Development of a SaaS application probe to the physical properties of the Earth’s interior: An attempt at moving HPC to the cloud. Computers and Geosciences 70, 147–153.
    • (2014) Computers and Geosciences , vol.70 , pp. 147-153
    • Huang, Q.1
  • 69
    • 85025815910 scopus 로고    scopus 로고
    • December 5, 2017
    • Intel. 2017. Intel MPI Benchmarks User Guide. Retrieved December 5, 2017, from https://software.intel.com/en-us/imb-user-guide-pdf.
    • (2017) Intel MPI Benchmarks User Guide
  • 77
    • 84870490377 scopus 로고    scopus 로고
    • A case for dual stack virtualization: Consolidating HPC and commodity applications in the cloud
    • ACM, New York, NY
    • Brian Kocoloski, Jiannan Ouyang, and John Lange. 2012. A case for dual stack virtualization: Consolidating HPC and commodity applications in the cloud. In Proceedings of the 3rd ACM Symposium on Cloud Computing. ACM, New York, NY, 23.
    • (2012) Proceedings of The 3rd ACM Symposium on Cloud Computing , pp. 23
    • Kocoloski, B.1    Ouyang, J.2    Lange, J.3
  • 79
    • 0002050141 scopus 로고    scopus 로고
    • Static scheduling algorithms for allocating directed task graphs to multiprocessors
    • Yu-Kwong Kwok and Ishfaq Ahmad. 1999. Static scheduling algorithms for allocating directed task graphs to multiprocessors. ACM Computing Surveys 3, 4, 406–471.
    • (1999) ACM Computing Surveys , vol.3 , Issue.4 , pp. 406-471
    • Kwok, Y.-K.1    Ahmad, I.2
  • 82
    • 84900330608 scopus 로고    scopus 로고
    • Kernel korner: CPU affinity
    • 2003
    • Robert Love. 2003. Kernel korner: CPU affinity. Linux Journal 2003, 111, 8.
    • (2003) Linux Journal , vol.111 , pp. 8
    • Love, R.1
  • 85
    • 84923941767 scopus 로고    scopus 로고
    • High-performance computing and the cloud: A match made in heaven or hell?
    • Paul Marshall, Henry Tufo, and Kate Keahey. 2013. High-performance computing and the cloud: A match made in heaven or hell? XRDS: Crossroads, the ACM Magazine for Students 19, 3, 52–57.
    • (2013) XRDS: Crossroads, The ACM Magazine for Students , vol.19 , Issue.3 , pp. 52-57
    • Marshall, P.1    Tufo, H.2    Keahey, K.3
  • 86
    • 79951850492 scopus 로고    scopus 로고
    • Hybrid computing—where HPC meets grid and cloud computing
    • Gabriel Mateescu, Wolfgang Gentzsch, and Calvin J. Ribbens. 2011. Hybrid computing—where HPC meets grid and cloud computing. Future Generation Computer Systems 27, 5, 440–453.
    • (2011) Future Generation Computer Systems , vol.27 , Issue.5 , pp. 440-453
    • Mateescu, G.1    Gentzsch, W.2    Ribbens, C.J.3
  • 89
    • 77954051808 scopus 로고    scopus 로고
    • Technical Report. National Institute of Standards and Technology (NIST), Gaithersburg, MD
    • Peter Mell and Tim Grance. 2011. The NIST Definition of Cloud Computing. Technical Report. National Institute of Standards and Technology (NIST), Gaithersburg, MD.
    • (2011) The NIST Definition of Cloud Computing
    • Mell, P.1    Grance, T.2
  • 91
    • 84959335841 scopus 로고    scopus 로고
    • Deciding when and how to move HPC jobs to the cloud
    • Marco A. S. Netto, Renato L. F. Cunha, and Nicole Sultanum. 2015. Deciding when and how to move HPC jobs to the cloud. IEEE Computer 48, 11, 86–89.
    • (2015) IEEE Computer , vol.48 , Issue.11 , pp. 86-89
    • Netto, M.A.S.1    Cunha, R.L.F.2    Sultanum, N.3
  • 92
    • 85040663070 scopus 로고    scopus 로고
    • December 5, 2017
    • NOAA. 2016. NOAA Completes Weather and Climate Supercomputer Upgrades. Retrieved December 5, 2017, from http://www.noaanews.noaa.gov/stories2016/011116-noaa-completes-weather-and-climate-supercomputer-upgrades.html.
    • (2016) NOAA Completes Weather and Climate Supercomputer Upgrades
  • 97
    • 84888607175 scopus 로고    scopus 로고
    • Cloud paradigms and practices for computational and data-enabled science and engineering
    • Manish Parashar, Moustafa AbdelBaky, Ivan Rodero, and Aditya Devarakonda. 2013. Cloud paradigms and practices for computational and data-enabled science and engineering. Computing in Science and Engineering 15, 4, 10–18.
    • (2013) Computing in Science and Engineering , vol.15 , Issue.4 , pp. 10-18
    • Parashar, M.1    AbdelBaky, M.2    Rodero, I.3    Devarakonda, A.4
  • 99
    • 84941557991 scopus 로고    scopus 로고
    • Early prediction of the cost of cloud usage for HPC applications
    • Massimiliano Rak, Mauro Turtur, and Umberto Villano. 2015. Early prediction of the cost of cloud usage for HPC applications. Scalable Computing: Practice and Experience 16, 3, 303–320.
    • (2015) Scalable Computing: Practice and Experience , vol.16 , Issue.3 , pp. 303-320
    • Rak, M.1    Turtur, M.2    Villano, U.3
  • 100
    • 84934756523 scopus 로고    scopus 로고
    • Exascale computing and big data
    • Daniel A. Reed and Jack Dongarra. 2015. Exascale computing and big data. Communications of the ACM 58, 7, 56–68.
    • (2015) Communications of The ACM , vol.58 , Issue.7 , pp. 56-68
    • Reed, D.A.1    Dongarra, J.2
  • 105
    • 2342612708 scopus 로고    scopus 로고
    • Libra: A computational economy-based job scheduling system for clusters
    • Jahanzeb Sherwani, Nosheen Ali, Nausheen Lotia, Zahra Hayat, and Rajkumar Buyya. 2004. Libra: A computational economy-based job scheduling system for clusters. Software: Practice and Experience 34, 6, 573–590.
    • (2004) Software: Practice and Experience , vol.34 , Issue.6 , pp. 573-590
    • Sherwani, J.1    Ali, N.2    Lotia, N.3    Hayat, Z.4    Buyya, R.5
  • 108
    • 34548029519 scopus 로고    scopus 로고
    • Container-based operating system virtualization: A scalable, high-performance alternative to hypervisors
    • Stephen Soltesz, Herbert Pötzl, Marc E. Fiuczynski, Andy Bavier, and Larry Peterson. 2007. Container-based operating system virtualization: A scalable, high-performance alternative to hypervisors. SIGOPS Operating Systems Review 41, 3, 275–287.
    • (2007) SIGOPS Operating Systems Review , vol.41 , Issue.3 , pp. 275-287
    • Soltesz, S.1    Pötzl, H.2    Fiuczynski, M.E.3    Bavier, A.4    Peterson, L.5
  • 109
    • 84891775435 scopus 로고    scopus 로고
    • CLOUDRB: A framework for scheduling and managing high-performance computing (HPC) applications in science cloud
    • Thamarai Selvi Somasundaram and Kannan Govindarajan. 2014. CLOUDRB: A framework for scheduling and managing high-performance computing (HPC) applications in science cloud. Future Generation Computer Systems 34, 47–65.
    • (2014) Future Generation Computer Systems , vol.34 , pp. 47-65
    • Somasundaram, T.S.1    Govindarajan, K.2
  • 110
    • 67651086975 scopus 로고    scopus 로고
    • A high-performance computing forecast: Partly cloudy
    • Thomas Sterling and Dylan Stark. 2009. A high-performance computing forecast: Partly cloudy. Computing in Science and Engineering 11, 4, 42–49.
    • (2009) Computing in Science and Engineering , vol.11 , Issue.4 , pp. 42-49
    • Sterling, T.1    Stark, D.2
  • 112
    • 72049111389 scopus 로고    scopus 로고
    • Retrieved December 5, 2017
    • TOP500. 2017. TOP500 Supercomputing Sites. Retrieved December 5, 2017, from https://www.top500.org.
    • (2017) TOP500 Supercomputing Sites
  • 113
    • 84866857270 scopus 로고    scopus 로고
    • U.S. Department of Energy Office of Science. Technical Report. Office of Advanced Scientific Computing Research (ASCR), Washington, DC
    • U.S. Department of Energy Office of Science. 2011. The Magellan Report on Cloud Computing for Science. Technical Report. Office of Advanced Scientific Computing Research (ASCR), Washington, DC.
    • (2011) The Magellan Report on Cloud Computing for Science
  • 114
    • 85030685680 scopus 로고    scopus 로고
    • Next generation cloud computing: New trends and research directions
    • Blesson Varghese and Rajkumar Buyya. 2017. Next generation cloud computing: New trends and research directions. Future Generation Computer Systems 79, 3, 849–861.
    • (2017) Future Generation Computer Systems , vol.79 , Issue.3 , pp. 849-861
    • Varghese, B.1    Buyya, R.2
  • 117
    • 84875196761 scopus 로고    scopus 로고
    • A unified framework for the deployment, exposure and access of HPC applications as services in clouds
    • Adam K. L. Wong and Andrzej M. Goscinski. 2013. A unified framework for the deployment, exposure and access of HPC applications as services in clouds. Future Generation Computer Systems 29, 6, 1333–1344.
    • (2013) Future Generation Computer Systems , vol.29 , Issue.6 , pp. 1333-1344
    • Wong, A.K.L.1    Goscinski, A.M.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.