메뉴 건너뛰기




Volumn 122, Issue , 2019, Pages 1-22

On stationary fractional mean field games

Author keywords

Ergodic mean field games; Fractional Kolmogorov Fokker Planck equation; Fractional viscous Hamilton Jacobi equation

Indexed keywords


EID: 85040517831     PISSN: 00217824     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.matpur.2017.10.013     Document Type: Article
Times cited : (25)

References (29)
  • 1
    • 77953146446 scopus 로고    scopus 로고
    • Lévy Processes and Stochastic Calculus
    • second edition Cambridge University Press Cambridge
    • Applebaum, D., Lévy Processes and Stochastic Calculus. second edition Cambridge Studies in Advanced Mathematics, vol. 116, 2009, Cambridge University Press, Cambridge.
    • (2009) Cambridge Studies in Advanced Mathematics , vol.116
    • Applebaum, D.1
  • 2
    • 84859644236 scopus 로고    scopus 로고
    • Lipschitz regularity of solutions for mixed integro-differential equations
    • Barles, G., Chasseigne, E., Ciomaga, A., Imbert, C., Lipschitz regularity of solutions for mixed integro-differential equations. J. Differ. Equ. 252:11 (2012), 6012–6060.
    • (2012) J. Differ. Equ. , vol.252 , Issue.11 , pp. 6012-6060
    • Barles, G.1    Chasseigne, E.2    Ciomaga, A.3    Imbert, C.4
  • 3
    • 84899437010 scopus 로고    scopus 로고
    • Large time behavior of periodic viscosity solutions for uniformly parabolic integro-differential equations
    • Barles, G., Chasseigne, E., Ciomaga, A., Imbert, C., Large time behavior of periodic viscosity solutions for uniformly parabolic integro-differential equations. Calc. Var. Partial Differ. Equ. 50:1–2 (2014), 283–304.
    • (2014) Calc. Var. Partial Differ. Equ. , vol.50 , Issue.1-2 , pp. 283-304
    • Barles, G.1    Chasseigne, E.2    Ciomaga, A.3    Imbert, C.4
  • 4
    • 85011347294 scopus 로고    scopus 로고
    • Lipschitz regularity for integro-differential equations with coercive Hamiltonians and application to large time behavior
    • Barles, G., Ley, O., Topp, E., Lipschitz regularity for integro-differential equations with coercive Hamiltonians and application to large time behavior. Nonlinearity 30:2 (2017), 703–734.
    • (2017) Nonlinearity , vol.30 , Issue.2 , pp. 703-734
    • Barles, G.1    Ley, O.2    Topp, E.3
  • 5
    • 84930240262 scopus 로고    scopus 로고
    • Bootstrap regularity for integro-differential operators and its application to nonlocal minimal surfaces
    • Barrios, B., Figalli, A., Valdinoci, E., Bootstrap regularity for integro-differential operators and its application to nonlocal minimal surfaces. Ann. Sc. Norm. Super. Pisa, Cl. Sci. (5) 13:3 (2014), 609–639.
    • (2014) Ann. Sc. Norm. Super. Pisa, Cl. Sci. (5) , vol.13 , Issue.3 , pp. 609-639
    • Barrios, B.1    Figalli, A.2    Valdinoci, E.3
  • 6
    • 85059790965 scopus 로고    scopus 로고
    • An approximate Nash equilibrium for pure jump Markov games of mean-field-type on continuous state space
    • Basna, R., Hilbert, A., Kolokoltsov, V.N., An approximate Nash equilibrium for pure jump Markov games of mean-field-type on continuous state space. arXiv:1605.05073, 2016.
    • (2016)
    • Basna, R.1    Hilbert, A.2    Kolokoltsov, V.N.3
  • 7
    • 85059789085 scopus 로고    scopus 로고
    • Mean-field games with controlled jumps
    • Benazzoli, C., Campi, L., Di Persio, L., Mean-field games with controlled jumps. arXiv:1703.01919, 2017.
    • (2017)
    • Benazzoli, C.1    Campi, L.2    Di Persio, L.3
  • 9
    • 33847191747 scopus 로고    scopus 로고
    • Estimates of heat kernel of fractional Laplacian perturbed by gradient operators
    • Bogdan, K., Jakubowski, T., Estimates of heat kernel of fractional Laplacian perturbed by gradient operators. Commun. Math. Phys. 271:1 (2007), 179–198.
    • (2007) Commun. Math. Phys. , vol.271 , Issue.1 , pp. 179-198
    • Bogdan, K.1    Jakubowski, T.2
  • 10
    • 73349137495 scopus 로고    scopus 로고
    • Convex Functions: Constructions, Characterizations and Counterexamples
    • Cambridge University Press Cambridge
    • Borwein, J.M., Vanderwerff, J.D., Convex Functions: Constructions, Characterizations and Counterexamples. Encyclopedia of Mathematics and Its Applications, vol. 109, 2010, Cambridge University Press, Cambridge.
    • (2010) Encyclopedia of Mathematics and Its Applications , vol.109
    • Borwein, J.M.1    Vanderwerff, J.D.2
  • 11
    • 85059794772 scopus 로고    scopus 로고
    • Stable solutions in potential mean field game systems
    • Briani, A., Cardaliaguet, P., Stable solutions in potential mean field game systems. arXiv:1612.01877, 2016.
    • (2016)
    • Briani, A.1    Cardaliaguet, P.2
  • 12
    • 79952706153 scopus 로고    scopus 로고
    • Regularity results for nonlocal equations by approximation
    • Caffarelli, L., Silvestre, L., Regularity results for nonlocal equations by approximation. Arch. Ration. Mech. Anal. 200:1 (2011), 59–88.
    • (2011) Arch. Ration. Mech. Anal. , vol.200 , Issue.1 , pp. 59-88
    • Caffarelli, L.1    Silvestre, L.2
  • 13
    • 77952042519 scopus 로고    scopus 로고
    • Hölder estimates for degenerate elliptic equations with coercive Hamiltonians
    • Capuzzo Dolcetta, I., Leoni, F., Porretta, A., Hölder estimates for degenerate elliptic equations with coercive Hamiltonians. Trans. Am. Math. Soc. 362:9 (2010), 4511–4536.
    • (2010) Trans. Am. Math. Soc. , vol.362 , Issue.9 , pp. 4511-4536
    • Capuzzo Dolcetta, I.1    Leoni, F.2    Porretta, A.3
  • 15
    • 84883759137 scopus 로고    scopus 로고
    • On the strong maximum principle for second-order nonlinear parabolic integro-differential equations
    • Ciomaga, A., On the strong maximum principle for second-order nonlinear parabolic integro-differential equations. Adv. Differ. Equ. 17:7–8 (2012), 635–671.
    • (2012) Adv. Differ. Equ. , vol.17 , Issue.7-8 , pp. 635-671
    • Ciomaga, A.1
  • 16
    • 84926524427 scopus 로고    scopus 로고
    • Multi-population mean field games systems with Neumann boundary conditions
    • Cirant, M., Multi-population mean field games systems with Neumann boundary conditions. J. Math. Pures Appl. (9) 103:5 (2015), 1294–1315.
    • (2015) J. Math. Pures Appl. (9) , vol.103 , Issue.5 , pp. 1294-1315
    • Cirant, M.1
  • 17
    • 84979000025 scopus 로고    scopus 로고
    • Stationary focusing mean-field games
    • Cirant, M., Stationary focusing mean-field games. Commun. Partial Differ. Equ. 41:8 (2016), 1324–1346.
    • (2016) Commun. Partial Differ. Equ. , vol.41 , Issue.8 , pp. 1324-1346
    • Cirant, M.1
  • 19
    • 84155167485 scopus 로고    scopus 로고
    • p-estimates for a class of non-local elliptic equations
    • p-estimates for a class of non-local elliptic equations. J. Funct. Anal. 262:3 (2012), 1166–1199.
    • (2012) J. Funct. Anal. , vol.262 , Issue.3 , pp. 1166-1199
    • Dong, H.1    Kim, D.2
  • 21
    • 39549087376 scopus 로고    scopus 로고
    • Large population stochastic dynamic games: closed-loop McKean–Vlasov systems and the Nash certainty equivalence principle
    • Huang, M., Malhamé R.P., Caines, P.E., Large population stochastic dynamic games: closed-loop McKean–Vlasov systems and the Nash certainty equivalence principle. Commun. Inf. Syst. 6:3 (2006), 221–251 http://projecteuclid.org/euclid.cis/1183728987.
    • (2006) Commun. Inf. Syst. , vol.6 , Issue.3 , pp. 221-251
    • Huang, M.1    Malhamé, R.P.2    Caines, P.E.3
  • 22
    • 34047127341 scopus 로고    scopus 로고
    • Mean field games
    • Lasry, J.-M., Lions, P.-L., Mean field games. Jpn. J. Math. 2:1 (2007), 229–260.
    • (2007) Jpn. J. Math. , vol.2 , Issue.1 , pp. 229-260
    • Lasry, J.-M.1    Lions, P.-L.2
  • 24
    • 84948110228 scopus 로고    scopus 로고
    • A variational approach to second order mean field games with density constraints: the stationary case
    • Mészáros, A.R., Silva, F.J., A variational approach to second order mean field games with density constraints: the stationary case. J. Math. Pures Appl. (9) 104:6 (2015), 1135–1159.
    • (2015) J. Math. Pures Appl. (9) , vol.104 , Issue.6 , pp. 1135-1159
    • Mészáros, A.R.1    Silva, F.J.2
  • 25
    • 84919444047 scopus 로고    scopus 로고
    • Optimal regularity of solutions to the obstacle problem for the fractional Laplacian with drift
    • Petrosyan, A., Pop, C.A., Optimal regularity of solutions to the obstacle problem for the fractional Laplacian with drift. J. Funct. Anal. 268:2 (2015), 417–472.
    • (2015) J. Funct. Anal. , vol.268 , Issue.2 , pp. 417-472
    • Petrosyan, A.1    Pop, C.A.2
  • 26
    • 0000819314 scopus 로고
    • Integral Functionals, Normal Integrands and Measurable Selections
    • Rockafellar, R.T., Integral Functionals, Normal Integrands and Measurable Selections. Lecture Notes in Math., vol. 543, 1976, 157–207.
    • (1976) Lecture Notes in Math. , vol.543 , pp. 157-207
    • Rockafellar, R.T.1
  • 27
    • 84961696296 scopus 로고    scopus 로고
    • Fractional Laplacian on the torus
    • Roncal, L., Stinga, P.R., Fractional Laplacian on the torus. Commun. Contemp. Math., 18(3), 2016, 1550033.
    • (2016) Commun. Contemp. Math. , vol.18 , Issue.3
    • Roncal, L.1    Stinga, P.R.2
  • 29
    • 0003295738 scopus 로고
    • Theory of Function Spaces
    • Birkhäuser Verlag Basel
    • Triebel, H., Theory of Function Spaces. Monographs in Mathematics, vol. 78, 1983, Birkhäuser Verlag, Basel.
    • (1983) Monographs in Mathematics , vol.78
    • Triebel, H.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.