-
1
-
-
77953146446
-
Lévy Processes and Stochastic Calculus
-
second edition Cambridge University Press Cambridge
-
Applebaum, D., Lévy Processes and Stochastic Calculus. second edition Cambridge Studies in Advanced Mathematics, vol. 116, 2009, Cambridge University Press, Cambridge.
-
(2009)
Cambridge Studies in Advanced Mathematics
, vol.116
-
-
Applebaum, D.1
-
2
-
-
84859644236
-
Lipschitz regularity of solutions for mixed integro-differential equations
-
Barles, G., Chasseigne, E., Ciomaga, A., Imbert, C., Lipschitz regularity of solutions for mixed integro-differential equations. J. Differ. Equ. 252:11 (2012), 6012–6060.
-
(2012)
J. Differ. Equ.
, vol.252
, Issue.11
, pp. 6012-6060
-
-
Barles, G.1
Chasseigne, E.2
Ciomaga, A.3
Imbert, C.4
-
3
-
-
84899437010
-
Large time behavior of periodic viscosity solutions for uniformly parabolic integro-differential equations
-
Barles, G., Chasseigne, E., Ciomaga, A., Imbert, C., Large time behavior of periodic viscosity solutions for uniformly parabolic integro-differential equations. Calc. Var. Partial Differ. Equ. 50:1–2 (2014), 283–304.
-
(2014)
Calc. Var. Partial Differ. Equ.
, vol.50
, Issue.1-2
, pp. 283-304
-
-
Barles, G.1
Chasseigne, E.2
Ciomaga, A.3
Imbert, C.4
-
4
-
-
85011347294
-
Lipschitz regularity for integro-differential equations with coercive Hamiltonians and application to large time behavior
-
Barles, G., Ley, O., Topp, E., Lipschitz regularity for integro-differential equations with coercive Hamiltonians and application to large time behavior. Nonlinearity 30:2 (2017), 703–734.
-
(2017)
Nonlinearity
, vol.30
, Issue.2
, pp. 703-734
-
-
Barles, G.1
Ley, O.2
Topp, E.3
-
5
-
-
84930240262
-
Bootstrap regularity for integro-differential operators and its application to nonlocal minimal surfaces
-
Barrios, B., Figalli, A., Valdinoci, E., Bootstrap regularity for integro-differential operators and its application to nonlocal minimal surfaces. Ann. Sc. Norm. Super. Pisa, Cl. Sci. (5) 13:3 (2014), 609–639.
-
(2014)
Ann. Sc. Norm. Super. Pisa, Cl. Sci. (5)
, vol.13
, Issue.3
, pp. 609-639
-
-
Barrios, B.1
Figalli, A.2
Valdinoci, E.3
-
6
-
-
85059790965
-
An approximate Nash equilibrium for pure jump Markov games of mean-field-type on continuous state space
-
Basna, R., Hilbert, A., Kolokoltsov, V.N., An approximate Nash equilibrium for pure jump Markov games of mean-field-type on continuous state space. arXiv:1605.05073, 2016.
-
(2016)
-
-
Basna, R.1
Hilbert, A.2
Kolokoltsov, V.N.3
-
7
-
-
85059789085
-
Mean-field games with controlled jumps
-
Benazzoli, C., Campi, L., Di Persio, L., Mean-field games with controlled jumps. arXiv:1703.01919, 2017.
-
(2017)
-
-
Benazzoli, C.1
Campi, L.2
Di Persio, L.3
-
8
-
-
85088964125
-
Mean Field Games and Mean Field Type Control Theory
-
Springer New York
-
Bensoussan, A., Frehse, J., Yam, P., Mean Field Games and Mean Field Type Control Theory. SpringerBriefs in Mathematics, 2013, Springer, New York.
-
(2013)
SpringerBriefs in Mathematics
-
-
Bensoussan, A.1
Frehse, J.2
Yam, P.3
-
9
-
-
33847191747
-
Estimates of heat kernel of fractional Laplacian perturbed by gradient operators
-
Bogdan, K., Jakubowski, T., Estimates of heat kernel of fractional Laplacian perturbed by gradient operators. Commun. Math. Phys. 271:1 (2007), 179–198.
-
(2007)
Commun. Math. Phys.
, vol.271
, Issue.1
, pp. 179-198
-
-
Bogdan, K.1
Jakubowski, T.2
-
10
-
-
73349137495
-
Convex Functions: Constructions, Characterizations and Counterexamples
-
Cambridge University Press Cambridge
-
Borwein, J.M., Vanderwerff, J.D., Convex Functions: Constructions, Characterizations and Counterexamples. Encyclopedia of Mathematics and Its Applications, vol. 109, 2010, Cambridge University Press, Cambridge.
-
(2010)
Encyclopedia of Mathematics and Its Applications
, vol.109
-
-
Borwein, J.M.1
Vanderwerff, J.D.2
-
11
-
-
85059794772
-
Stable solutions in potential mean field game systems
-
Briani, A., Cardaliaguet, P., Stable solutions in potential mean field game systems. arXiv:1612.01877, 2016.
-
(2016)
-
-
Briani, A.1
Cardaliaguet, P.2
-
12
-
-
79952706153
-
Regularity results for nonlocal equations by approximation
-
Caffarelli, L., Silvestre, L., Regularity results for nonlocal equations by approximation. Arch. Ration. Mech. Anal. 200:1 (2011), 59–88.
-
(2011)
Arch. Ration. Mech. Anal.
, vol.200
, Issue.1
, pp. 59-88
-
-
Caffarelli, L.1
Silvestre, L.2
-
13
-
-
77952042519
-
Hölder estimates for degenerate elliptic equations with coercive Hamiltonians
-
Capuzzo Dolcetta, I., Leoni, F., Porretta, A., Hölder estimates for degenerate elliptic equations with coercive Hamiltonians. Trans. Am. Math. Soc. 362:9 (2010), 4511–4536.
-
(2010)
Trans. Am. Math. Soc.
, vol.362
, Issue.9
, pp. 4511-4536
-
-
Capuzzo Dolcetta, I.1
Leoni, F.2
Porretta, A.3
-
14
-
-
84942369075
-
Second order mean field games with degenerate diffusion and local coupling
-
Cardaliaguet, P., Graber, P.J., Porretta, A., Tonon, D., Second order mean field games with degenerate diffusion and local coupling. NoDEA Nonlinear Differ. Equ. Appl. 22:5 (2015), 1287–1317.
-
(2015)
NoDEA Nonlinear Differ. Equ. Appl.
, vol.22
, Issue.5
, pp. 1287-1317
-
-
Cardaliaguet, P.1
Graber, P.J.2
Porretta, A.3
Tonon, D.4
-
15
-
-
84883759137
-
On the strong maximum principle for second-order nonlinear parabolic integro-differential equations
-
Ciomaga, A., On the strong maximum principle for second-order nonlinear parabolic integro-differential equations. Adv. Differ. Equ. 17:7–8 (2012), 635–671.
-
(2012)
Adv. Differ. Equ.
, vol.17
, Issue.7-8
, pp. 635-671
-
-
Ciomaga, A.1
-
16
-
-
84926524427
-
Multi-population mean field games systems with Neumann boundary conditions
-
Cirant, M., Multi-population mean field games systems with Neumann boundary conditions. J. Math. Pures Appl. (9) 103:5 (2015), 1294–1315.
-
(2015)
J. Math. Pures Appl. (9)
, vol.103
, Issue.5
, pp. 1294-1315
-
-
Cirant, M.1
-
17
-
-
84979000025
-
Stationary focusing mean-field games
-
Cirant, M., Stationary focusing mean-field games. Commun. Partial Differ. Equ. 41:8 (2016), 1324–1346.
-
(2016)
Commun. Partial Differ. Equ.
, vol.41
, Issue.8
, pp. 1324-1346
-
-
Cirant, M.1
-
18
-
-
1342318409
-
Financial Modelling with Jump Processes
-
Chapman & Hall/CRC Boca Raton, FL
-
Cont, R., Tankov, P., Financial Modelling with Jump Processes. Chapman & Hall/CRC Financial Mathematics Series, 2004, Chapman & Hall/CRC, Boca Raton, FL.
-
(2004)
Chapman & Hall/CRC Financial Mathematics Series
-
-
Cont, R.1
Tankov, P.2
-
19
-
-
84155167485
-
p-estimates for a class of non-local elliptic equations
-
p-estimates for a class of non-local elliptic equations. J. Funct. Anal. 262:3 (2012), 1166–1199.
-
(2012)
J. Funct. Anal.
, vol.262
, Issue.3
, pp. 1166-1199
-
-
Dong, H.1
Kim, D.2
-
20
-
-
85101168605
-
Regularity Theory for Mean-Field Game Systems
-
Springer Cham
-
Gomes, D.A., Pimentel, E.A., Voskanyan, V., Regularity Theory for Mean-Field Game Systems. SpringerBriefs in Mathematics, 2016, Springer, Cham.
-
(2016)
SpringerBriefs in Mathematics
-
-
Gomes, D.A.1
Pimentel, E.A.2
Voskanyan, V.3
-
21
-
-
39549087376
-
Large population stochastic dynamic games: closed-loop McKean–Vlasov systems and the Nash certainty equivalence principle
-
Huang, M., Malhamé R.P., Caines, P.E., Large population stochastic dynamic games: closed-loop McKean–Vlasov systems and the Nash certainty equivalence principle. Commun. Inf. Syst. 6:3 (2006), 221–251 http://projecteuclid.org/euclid.cis/1183728987.
-
(2006)
Commun. Inf. Syst.
, vol.6
, Issue.3
, pp. 221-251
-
-
Huang, M.1
Malhamé, R.P.2
Caines, P.E.3
-
22
-
-
34047127341
-
Mean field games
-
Lasry, J.-M., Lions, P.-L., Mean field games. Jpn. J. Math. 2:1 (2007), 229–260.
-
(2007)
Jpn. J. Math.
, vol.2
, Issue.1
, pp. 229-260
-
-
Lasry, J.-M.1
Lions, P.-L.2
-
24
-
-
84948110228
-
A variational approach to second order mean field games with density constraints: the stationary case
-
Mészáros, A.R., Silva, F.J., A variational approach to second order mean field games with density constraints: the stationary case. J. Math. Pures Appl. (9) 104:6 (2015), 1135–1159.
-
(2015)
J. Math. Pures Appl. (9)
, vol.104
, Issue.6
, pp. 1135-1159
-
-
Mészáros, A.R.1
Silva, F.J.2
-
25
-
-
84919444047
-
Optimal regularity of solutions to the obstacle problem for the fractional Laplacian with drift
-
Petrosyan, A., Pop, C.A., Optimal regularity of solutions to the obstacle problem for the fractional Laplacian with drift. J. Funct. Anal. 268:2 (2015), 417–472.
-
(2015)
J. Funct. Anal.
, vol.268
, Issue.2
, pp. 417-472
-
-
Petrosyan, A.1
Pop, C.A.2
-
26
-
-
0000819314
-
Integral Functionals, Normal Integrands and Measurable Selections
-
Rockafellar, R.T., Integral Functionals, Normal Integrands and Measurable Selections. Lecture Notes in Math., vol. 543, 1976, 157–207.
-
(1976)
Lecture Notes in Math.
, vol.543
, pp. 157-207
-
-
Rockafellar, R.T.1
-
27
-
-
84961696296
-
Fractional Laplacian on the torus
-
Roncal, L., Stinga, P.R., Fractional Laplacian on the torus. Commun. Contemp. Math., 18(3), 2016, 1550033.
-
(2016)
Commun. Contemp. Math.
, vol.18
, Issue.3
-
-
Roncal, L.1
Stinga, P.R.2
-
28
-
-
84969228139
-
Transference of fractional Laplacian regularity
-
Roncal, L., Stinga, P.R., Transference of fractional Laplacian regularity. Special Functions, Partial Differential Equations, and Harmonic Analysis, 2014, 203–212.
-
(2014)
Special Functions, Partial Differential Equations, and Harmonic Analysis
, pp. 203-212
-
-
Roncal, L.1
Stinga, P.R.2
-
29
-
-
0003295738
-
Theory of Function Spaces
-
Birkhäuser Verlag Basel
-
Triebel, H., Theory of Function Spaces. Monographs in Mathematics, vol. 78, 1983, Birkhäuser Verlag, Basel.
-
(1983)
Monographs in Mathematics
, vol.78
-
-
Triebel, H.1
|