메뉴 건너뛰기




Volumn 6, Issue 1, 2017, Pages

Circulating exosome microRNA associated with heart failure secondary to myxomatous mitral valve disease in a naturally occurring canine model

Author keywords

animal models of human disease; biomarker; exosome; heart failure; miRNA; mitral valve

Indexed keywords

CIRCULATING EXOSOME MICRORNA; CIRCULATING MICRORNA; MICRORNA; MICRORNA 181C; MICRORNA 495; MICRORNA 599; MICRORNA 9; UNCLASSIFIED DRUG;

EID: 85040367145     PISSN: None     EISSN: 20013078     Source Type: Journal    
DOI: 10.1080/20013078.2017.1350088     Document Type: Article
Times cited : (62)

References (41)
  • 1
    • 84879398211 scopus 로고    scopus 로고
    • TGF-β signalling and reactive oxygen species drive fibrosis and matrix remodelling in myxomatous mitral valves
    • et al
    • Hagler MA, Hadley TM, Zhang H, et al. TGF-β signalling and reactive oxygen species drive fibrosis and matrix remodelling in myxomatous mitral valves. Cardiovasc Res. 2013;99:1–12.
    • (2013) Cardiovasc Res , vol.99 , pp. 1-12
    • Hagler, M.A.1    Hadley, T.M.2    Zhang, H.3
  • 2
    • 48949098859 scopus 로고    scopus 로고
    • 2008 Focused update incorporated into the ACC/AHA 2006 guidelines for the management of patients with valvular heart disease
    • et al
    • Bonow RO, Carabello BA, Chatterjee K, et al. 2008 Focused update incorporated into the ACC/AHA 2006 guidelines for the management of patients with valvular heart disease. JACC. 2008;52:e1–142.
    • (2008) JACC , vol.52 , pp. e1-e142
    • Bonow, R.O.1    Carabello, B.A.2    Chatterjee, K.3
  • 3
    • 84858401128 scopus 로고    scopus 로고
    • Historical review, epidemiology and natural history of degenerative mitral valve disease
    • Borgarelli M, Buchanan JW., Historical review, epidemiology and natural history of degenerative mitral valve disease. J Vet Cardiol. 2012;14:93–101.
    • (2012) J Vet Cardiol , vol.14 , pp. 93-101
    • Borgarelli, M.1    Buchanan, J.W.2
  • 4
    • 84904985459 scopus 로고    scopus 로고
    • Regulation of microRNA biogenesis
    • Ha M, Kim VN., Regulation of microRNA biogenesis. Nat Rev. 2014;15:509–524.
    • (2014) Nat Rev , vol.15 , pp. 509-524
    • Ha, M.1    Kim, V.N.2
  • 5
    • 84908447891 scopus 로고    scopus 로고
    • Detailed characterization of microRNA changes in a canine heart failure model: relationship to arrhythmogenic structural remodeling
    • et al
    • Chen Y, Wakili R, Xiao J, et al. Detailed characterization of microRNA changes in a canine heart failure model: relationship to arrhythmogenic structural remodeling. J Mol Cell Cardiol. 2014;77:113–124.
    • (2014) J Mol Cell Cardiol , vol.77 , pp. 113-124
    • Chen, Y.1    Wakili, R.2    Xiao, J.3
  • 6
    • 84929492983 scopus 로고    scopus 로고
    • MicroRNA profiling of atrial fibrillation in canines: miR-206 modulates intrinsic cardiac autonomic nerve remodeling by regulating SOD1
    • et al
    • Zhang Y, Zheng S, Geng Y, et al. MicroRNA profiling of atrial fibrillation in canines: miR-206 modulates intrinsic cardiac autonomic nerve remodeling by regulating SOD1. PLoS One. 2015;10:e0122674.
    • (2015) PLoS One , vol.10
    • Zhang, Y.1    Zheng, S.2    Geng, Y.3
  • 7
    • 84934903736 scopus 로고    scopus 로고
    • Expression profiling of circulating microRNAs in canine myxomatous mitral valve disease
    • et al
    • Li Q, Freeman LM, Rush, JE, et al. Expression profiling of circulating microRNAs in canine myxomatous mitral valve disease. In J Mol Sci. 2015;16:14098–14108.
    • (2015) In J Mol Sci , vol.16 , pp. 14098-14108
    • Li, Q.1    Freeman, L.M.2    Je, R.3
  • 8
    • 84907963140 scopus 로고    scopus 로고
    • Plasma miRNAs as potential biomarkers of chronic degenerative valvular disease in Dachshunds
    • et al
    • Hulanicka M, Garncarz M, Parzeniecka-Jaworska M, et al. Plasma miRNAs as potential biomarkers of chronic degenerative valvular disease in Dachshunds. BMC Vet Res. 2014;10:205–212.
    • (2014) BMC Vet Res , vol.10 , pp. 205-212
    • Hulanicka, M.1    Garncarz, M.2    Parzeniecka-Jaworska, M.3
  • 9
    • 84877585949 scopus 로고    scopus 로고
    • Extracellular vesicles: biology and emerging therapeutic opportunities
    • et al
    • Andaloussi SE, Mager I, Breakefield XO, et al. Extracellular vesicles: biology and emerging therapeutic opportunities. Nat Rev. 2013;12:347–357.
    • (2013) Nat Rev , vol.12 , pp. 347-357
    • Andaloussi, S.E.1    Mager, I.2    Breakefield, X.O.3
  • 10
    • 85009079953 scopus 로고    scopus 로고
    • Roles of exosomes in cardioprotection
    • et al
    • Barile L, Moccetti T, Marban E, et al. Roles of exosomes in cardioprotection. Eur Heart J. 2016;ehw304.
    • (2016) Eur Heart J , pp. ehw304
    • Barile, L.1    Moccetti, T.2    Marban, E.3
  • 11
    • 70350430448 scopus 로고    scopus 로고
    • Guidelines for the diagnosis and treatment of canine chronic valvular heart disease
    • et al
    • Atkins C, Bonagura J, Ettinger S, et al. Guidelines for the diagnosis and treatment of canine chronic valvular heart disease. J Vet Intern Med. 2009;23:1142–1150.
    • (2009) J Vet Intern Med , vol.23 , pp. 1142-1150
    • Atkins, C.1    Bonagura, J.2    Ettinger, S.3
  • 12
    • 85013222187 scopus 로고    scopus 로고
    • Standardization of sample collection, isolation and analysis methods in extracellular vesicle research
    • et al
    • Witwer KW, Buzas EI, Bemis LT, et al. Standardization of sample collection, isolation and analysis methods in extracellular vesicle research. J Extracell Vesicles. 2013;2:20360.
    • (2013) J Extracell Vesicles , vol.2 , pp. 20360
    • Witwer, K.W.1    Buzas, E.I.2    Bemis, L.T.3
  • 13
    • 84904704297 scopus 로고    scopus 로고
    • Biogenesis, secretion, and intercellular interactions of exosomes and other extracellular vesicles
    • Colombo M, Raposo G, Thery C. Biogenesis, secretion, and intercellular interactions of exosomes and other extracellular vesicles. Annu Rev Cell Dev Biol. 2014;30:255–289.
    • (2014) Annu Rev Cell Dev Biol , vol.30 , pp. 255-289
    • Colombo, M.1    Raposo, G.2    Thery, C.3
  • 14
    • 84922718826 scopus 로고    scopus 로고
    • Solid tumors of childhood display specific serum microRNA profiles
    • et al
    • Murray MJ, Raby K, Saini HK, et al. Solid tumors of childhood display specific serum microRNA profiles. Cancer Epidemiol Biomarkers Prev. 2014;24:350–361.
    • (2014) Cancer Epidemiol Biomarkers Prev , vol.24 , pp. 350-361
    • Murray, M.J.1    Raby, K.2    Saini, H.K.3
  • 15
    • 84859892863 scopus 로고    scopus 로고
    • MicroRNA profiling: approaches and considerations
    • Pritchard CC, Cheng HH, Tewari M. MicroRNA profiling: approaches and considerations. Nat Rev. 2012;13:358–369.
    • (2012) Nat Rev , vol.13 , pp. 358-369
    • Pritchard, C.C.1    Cheng, H.H.2    Tewari, M.3
  • 16
    • 0001677717 scopus 로고
    • Controlling the false discovery rate: a practical and powerful approach to multiple testing
    • Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Soc B. 1995;57:289–300.
    • (1995) J R Stat Soc Soc B , vol.57 , pp. 289-300
    • Benjamini, Y.1    Hochberg, Y.2
  • 17
    • 84940502214 scopus 로고    scopus 로고
    • Predicting effective microRNA target sites in mammalian mRNAs
    • et al
    • Agarwal V, Bell GW, Nam JW, et al. Predicting effective microRNA target sites in mammalian mRNAs. eLife. 2015;4:e05005.
    • (2015) eLife , vol.4 , pp. e05005
    • Agarwal, V.1    Bell, G.W.2    Nam, J.W.3
  • 18
    • 84941083219 scopus 로고    scopus 로고
    • miRDB: an online resource for microRNA target prediction and functional annotations
    • Wong N, Wang X. miRDB: an online resource for microRNA target prediction and functional annotations. Nucleic Acids Res. 2015;43:D146–D152.
    • (2015) Nucleic Acids Res , vol.43 , pp. D146-D152
    • Wong, N.1    Wang, X.2
  • 19
    • 0037311919 scopus 로고    scopus 로고
    • TM4: a free, open-source system for microarray data management and analysis
    • et al
    • Saeed AI, Sharov V, White J, et al. TM4: a free, open-source system for microarray data management and analysis. Biotechniques. 2003;34:374–378.
    • (2003) Biotechniques , vol.34 , pp. 374-378
    • Saeed, A.I.1    Sharov, V.2    White, J.3
  • 20
    • 84904313207 scopus 로고    scopus 로고
    • Particle size distribution of exosomes and microvesicles determined by transmission electron microscopy, flow cytometry, nanoparticle tracking analysis, and resistive pulse sensing
    • et al
    • van der Pol E, Coumans FAW, Grootemaat AE, et al. Particle size distribution of exosomes and microvesicles determined by transmission electron microscopy, flow cytometry, nanoparticle tracking analysis, and resistive pulse sensing. J Thromb Haemost. 2014;12:1182–1192.
    • (2014) J Thromb Haemost , vol.12 , pp. 1182-1192
    • van der Pol, E.1    Coumans, F.A.W.2    Grootemaat, A.E.3
  • 21
    • 84958762780 scopus 로고    scopus 로고
    • MicroRNA-9 regulates cardiac fibrosis by targeting PDGFR-β in rats
    • et al
    • Wang L, Ma LK, Fan H, et al. MicroRNA-9 regulates cardiac fibrosis by targeting PDGFR-β in rats. J Physiol Biochem. 2016;72:213–223.
    • (2016) J Physiol Biochem , vol.72 , pp. 213-223
    • Wang, L.1    Ma, L.K.2    Fan, H.3
  • 22
    • 84862279805 scopus 로고    scopus 로고
    • Nuclear microRNA regulates the mitochondrial genome in the heart
    • et al
    • Das S, Ferlito M, Kent OA, et al. Nuclear microRNA regulates the mitochondrial genome in the heart. Circ Res. 2012;110:1596–1603.
    • (2012) Circ Res , vol.110 , pp. 1596-1603
    • Das, S.1    Ferlito, M.2    Kent, O.A.3
  • 23
    • 84901020290 scopus 로고    scopus 로고
    • miR-181c regulates the mitochondrial genome, bioenergetics, and propensity for heart failure in vivo
    • et al
    • Das S, Bedja D, Campbell N, et al. miR-181c regulates the mitochondrial genome, bioenergetics, and propensity for heart failure in vivo. PLoS One. 2014;9:e96820.
    • (2014) PLoS One , vol.9
    • Das, S.1    Bedja, D.2    Campbell, N.3
  • 24
    • 84858005054 scopus 로고    scopus 로고
    • miR-181 targets multiple Bcl-2 family members and influences apoptosis and mitochondrial function in astrocytes
    • et al
    • Ouyang YB, Lu Y, Yue S, et al. miR-181 targets multiple Bcl-2 family members and influences apoptosis and mitochondrial function in astrocytes. Mitochondrion. 2012;12:213–219.
    • (2012) Mitochondrion , vol.12 , pp. 213-219
    • Ouyang, Y.B.1    Lu, Y.2    Yue, S.3
  • 25
    • 84940788564 scopus 로고    scopus 로고
    • MicroRNA-181c targets Bcl-2 and regulates mitochondrial morphology in myocardial cells
    • et al
    • Wang H, Li J, Chi H, et al. MicroRNA-181c targets Bcl-2 and regulates mitochondrial morphology in myocardial cells. J Cell Mol Med. 2015;19:2084–2097.
    • (2015) J Cell Mol Med , vol.19 , pp. 2084-2097
    • Wang, H.1    Li, J.2    Chi, H.3
  • 26
    • 84962200760 scopus 로고    scopus 로고
    • miR-410 and miR-495 are dynamically regulated in diverse cardiomyopathies and their inhibition attenuates pathological hypertrophy
    • et al
    • Clark AL, Maruyama S, Sano S, et al. miR-410 and miR-495 are dynamically regulated in diverse cardiomyopathies and their inhibition attenuates pathological hypertrophy. PLoS One. 2016;11:e0151515.
    • (2016) PLoS One , vol.11
    • Clark, A.L.1    Maruyama, S.2    Sano, S.3
  • 27
    • 84942918402 scopus 로고    scopus 로고
    • MicroRNAs in the myocyte enhancer factor 2 (MEF2)-regulated Gtl2-Dio3 noncoding RNA locus promote cardiomyocyte proliferation by targeting the transcriptional coactivator Cited2
    • Clark AL, Naya FJ. MicroRNAs in the myocyte enhancer factor 2 (MEF2)-regulated Gtl2-Dio3 noncoding RNA locus promote cardiomyocyte proliferation by targeting the transcriptional coactivator Cited2. J Biol Chem. 2015;290:23162–23172.
    • (2015) J Biol Chem , vol.290 , pp. 23162-23172
    • Clark, A.L.1    Naya, F.J.2
  • 28
    • 84952333344 scopus 로고    scopus 로고
    • miR-599 inhibits vascular smooth muscle cells proliferation and migration by targeting TGFB2
    • Xie B, Zhang C, Jiang S. miR-599 inhibits vascular smooth muscle cells proliferation and migration by targeting TGFB2. PLoS One. 2015;10:e0141512.
    • (2015) PLoS One , vol.10
    • Xie, B.1    Zhang, C.2    Jiang, S.3
  • 29
    • 85015442772 scopus 로고    scopus 로고
    • miRNet - dissecting miRNA-target interactions and functional associations through network-based visual analysis
    • et al
    • Fan Y, Siklenka K, Arora SK, et al. miRNet - dissecting miRNA-target interactions and functional associations through network-based visual analysis. Nucl Acids Res. 2016;44:W135–W141.
    • (2016) Nucl Acids Res , vol.44 , pp. W135-W141
    • Fan, Y.1    Siklenka, K.2    Arora, S.K.3
  • 30
    • 0029098538 scopus 로고
    • A human nucleoporin-like protein that specifically interacts with HIV Rev
    • Fritz CC, Zapp ML, Green MR. A human nucleoporin-like protein that specifically interacts with HIV Rev. Nature. 1995;376:530–533.
    • (1995) Nature , vol.376 , pp. 530-533
    • Fritz, C.C.1    Zapp, M.L.2    Green, M.R.3
  • 31
    • 84958537861 scopus 로고    scopus 로고
    • Gene signatures of postoperative atrial fibrillation in atrial tissue after coronary artery bypass grafting surgery in patients receiving β-blockers
    • et al
    • Kertai MD, Qi W, Li YJ, et al. Gene signatures of postoperative atrial fibrillation in atrial tissue after coronary artery bypass grafting surgery in patients receiving β-blockers. J Mol Cell Cardiol. 2016;92:109–115.
    • (2016) J Mol Cell Cardiol , vol.92 , pp. 109-115
    • Kertai, M.D.1    Qi, W.2    Li, Y.J.3
  • 32
    • 84942523098 scopus 로고    scopus 로고
    • Akt-dependent Girdin phosphorylation regulates repair processes after acute myocardial infarction
    • et al
    • Hayano S, Takefuji M, Maeda K, et al. Akt-dependent Girdin phosphorylation regulates repair processes after acute myocardial infarction. J Mol Cell Cardiol. 2015;88:55–63.
    • (2015) J Mol Cell Cardiol , vol.88 , pp. 55-63
    • Hayano, S.1    Takefuji, M.2    Maeda, K.3
  • 33
    • 84923315888 scopus 로고    scopus 로고
    • Novel insights into TRPM7 function in fibrotic diseases: a potential therapeutic target
    • et al
    • Xu T, Wu BM, Yao HW, et al. Novel insights into TRPM7 function in fibrotic diseases: a potential therapeutic target. J Cell Physiol. 2015;230:1163–1169.
    • (2015) J Cell Physiol , vol.230 , pp. 1163-1169
    • Xu, T.1    Wu, B.M.2    Yao, H.W.3
  • 34
    • 84875144768 scopus 로고    scopus 로고
    • The SLC8 gene family of sodium–calcium exchangers (NCX)–Structure, function, and regulation in health and disease
    • Khananshvili D. The SLC8 gene family of sodium–calcium exchangers (NCX)–Structure, function, and regulation in health and disease. Mol Aspects Med. 2013;34:220–235.
    • (2013) Mol Aspects Med , vol.34 , pp. 220-235
    • Khananshvili, D.1
  • 35
    • 84973316009 scopus 로고    scopus 로고
    • Dyrk1a regulates the cardiomyocyte cell cycle via D-cyclin-dependent Rb/E2f-signalling
    • et al
    • Hille S, Dierck F, Kuhl C, et al. Dyrk1a regulates the cardiomyocyte cell cycle via D-cyclin-dependent Rb/E2f-signalling. Cardiovasc Res. 2016;110:381–394.
    • (2016) Cardiovasc Res , vol.110 , pp. 381-394
    • Hille, S.1    Dierck, F.2    Kuhl, C.3
  • 36
    • 84955268039 scopus 로고    scopus 로고
    • Cardiac myocyte KLF5 regulates Ppara expression and cardiac function
    • et al
    • Drosatos K, Pollak NM, Pol CJ, et al. Cardiac myocyte KLF5 regulates Ppara expression and cardiac function. Circ Res. 2016;118:241–253.
    • (2016) Circ Res , vol.118 , pp. 241-253
    • Drosatos, K.1    Pollak, N.M.2    Pol, C.J.3
  • 37
    • 84928377666 scopus 로고    scopus 로고
    • miR-222 is necessary for exercise-induced cardiac growth and protects against pathological cardiac remodeling
    • et al
    • Liu X, Xiao J, Zhu H, et al. miR-222 is necessary for exercise-induced cardiac growth and protects against pathological cardiac remodeling. Cell Metab. 2015;21:584–595.
    • (2015) Cell Metab , vol.21 , pp. 584-595
    • Liu, X.1    Xiao, J.2    Zhu, H.3
  • 38
    • 84875309966 scopus 로고    scopus 로고
    • The mitochondrial RNA-binding protein GRSF1 localizes to RNA granules and is required for posttranscriptional mitochondrial gene expression
    • Antonicka H, Sasarman F, Nishimura T. The mitochondrial RNA-binding protein GRSF1 localizes to RNA granules and is required for posttranscriptional mitochondrial gene expression. Cell Metab. 2013;17:386–398.
    • (2013) Cell Metab , vol.17 , pp. 386-398
    • Antonicka, H.1    Sasarman, F.2    Nishimura, T.3
  • 39
    • 67349184928 scopus 로고    scopus 로고
    • Immunohistochemical characterization of the extracellular matrix in normal mitral valves and in chronic valve disease (endocardiosis) in dogs
    • Aupperle H, Marz I, Thielebein J. Immunohistochemical characterization of the extracellular matrix in normal mitral valves and in chronic valve disease (endocardiosis) in dogs. Res Vet Sci. 2009;87:277–283.
    • (2009) Res Vet Sci , vol.87 , pp. 277-283
    • Aupperle, H.1    Marz, I.2    Thielebein, J.3
  • 40
    • 48949099429 scopus 로고    scopus 로고
    • Expression of transforming growth factor-β1, -β2 and -β3 in normal and diseased canine mitral valves
    • et al
    • Aupperle H, Marz I, Thielebein J, et al. Expression of transforming growth factor-β1, -β2 and -β3 in normal and diseased canine mitral valves. J Comp Path. 2008;139:97–107.
    • (2008) J Comp Path , vol.139 , pp. 97-107
    • Aupperle, H.1    Marz, I.2    Thielebein, J.3
  • 41
    • 84873271672 scopus 로고    scopus 로고
    • Modulation of transforming growth factor-β signaling and extracellular matrix production in myxomatous mitral valves by angiotensin II receptor blockers
    • et al
    • Geirsson A, Singh M, Ali R, et al. Modulation of transforming growth factor-β signaling and extracellular matrix production in myxomatous mitral valves by angiotensin II receptor blockers. Circulation. 2012;126(suppl 1):S189–S197.
    • (2012) Circulation , vol.126 , pp. S189-S197
    • Geirsson, A.1    Singh, M.2    Ali, R.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.