메뉴 건너뛰기




Volumn 10668 LNCS, Issue , 2017, Pages 646-655

The detection of built-up areas in high-resolution SAR images based on deep neural networks

Author keywords

Deep neural networks; Detection of built up areas; High resolution SAR images; Multi level; Structured prediction

Indexed keywords

DEEP NEURAL NETWORKS; FORECASTING; NEURAL NETWORKS; PIXELS; SYNTHETIC APERTURE RADAR;

EID: 85040230435     PISSN: 03029743     EISSN: 16113349     Source Type: Book Series    
DOI: 10.1007/978-3-319-71598-8_57     Document Type: Conference Paper
Times cited : (10)

References (18)
  • 1
    • 0036643365 scopus 로고    scopus 로고
    • Automatic detection of built-up areas in high-resolution polarimetric SAR images
    • Borghys, D., Perneel, C., Acheroy, M.: Automatic detection of built-up areas in high-resolution polarimetric SAR images. Pattern Recogn. Lett. 23(9), 1085–1093 (2002)
    • (2002) Pattern Recogn. Lett. , vol.23 , Issue.9 , pp. 1085-1093
    • Borghys, D.1    Perneel, C.2    Acheroy, M.3
  • 2
    • 78650895979 scopus 로고    scopus 로고
    • Supervised land-cover classification of TerraSAR-X imagery over urban areas using extremely randomized clustering forests
    • Yang, W., Zou, T., Dai, D., et al.: Supervised land-cover classification of TerraSAR-X imagery over urban areas using extremely randomized clustering forests. In: Urban Remote Sensing Event, 2009 Joint, pp. 1–6. IEEE (2009)
    • (2009) Urban Remote Sensing Event, 2009 Joint , pp. 1-6
    • Yang, W.1    Zou, T.2    Dai, D.3
  • 11
    • 84992303973 scopus 로고    scopus 로고
    • Target classification using the deep convolutional networks for SAR images
    • Chen, S., Wang, H., Xu, F., et al.: Target classification using the deep convolutional networks for SAR images. IEEE Trans. Geosci. Remote Sens. 54(8), 4806–4817 (2016)
    • (2016) IEEE Trans. Geosci. Remote Sens. , vol.54 , Issue.8 , pp. 4806-4817
    • Chen, S.1    Wang, H.2    Xu, F.3
  • 12
    • 84930804691 scopus 로고    scopus 로고
    • Change detection in synthetic aperture radar images based on deep neural networks
    • Gong, M., Zhao, J., Liu, J., et al.: Change detection in synthetic aperture radar images based on deep neural networks. IEEE Trans. Neural Netw. Learn. Syst. 27(1), 125–138 (2016)
    • (2016) IEEE Trans. Neural Netw. Learn. Syst. , vol.27 , Issue.1 , pp. 125-138
    • Gong, M.1    Zhao, J.2    Liu, J.3
  • 13
    • 85011656447 scopus 로고    scopus 로고
    • Segmenting retinal blood vessels with deep neural networks
    • Liskowski, P., Krawiec, K.: Segmenting retinal blood vessels with deep neural networks. IEEE Trans. Med. Imaging 35(11), 2369–2380 (2016)
    • (2016) IEEE Trans. Med. Imaging , vol.35 , Issue.11 , pp. 2369-2380
    • Liskowski, P.1    Krawiec, K.2
  • 16
    • 85009928594 scopus 로고    scopus 로고
    • Deeply-supervised nets
    • Lee, C Y., Xie, S., Gallagher, P W., et al.: Deeply-supervised nets. AISTATS. 2(3), p. 5 (2015)
    • (2015) AISTATS , vol.2 , Issue.3 , pp. 5
    • Lee, C.Y.1    Xie, S.2    Gallagher, P.W.3
  • 18
    • 0032630347 scopus 로고    scopus 로고
    • Performance evaluation and analysis of monocular building extraction from aerial imagery
    • Shufelt, J.A.: Performance evaluation and analysis of monocular building extraction from aerial imagery. IEEE Trans. Pattern Anal. Mach. Intell. 21(4), 311–326 (1999)
    • (1999) IEEE Trans. Pattern Anal. Mach. Intell. , vol.21 , Issue.4 , pp. 311-326
    • Shufelt, J.A.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.