메뉴 건너뛰기




Volumn 11, Issue 4, 2017, Pages

Deep convolutional neural networks for building extraction from orthoimages and dense image matching point clouds

Author keywords

building extraction; convolutional neural networks; deep learning; dense image matching; orthoimage; point cloud

Indexed keywords

BUILDINGS; COMPLEX NETWORKS; CONVOLUTION; DEEP LEARNING; EXTRACTION; IMAGE MATCHING; IMAGE PROCESSING; NEURAL NETWORKS; REMOTE SENSING; SUPPORT VECTOR MACHINES; URBAN GROWTH;

EID: 85038568173     PISSN: None     EISSN: 19313195     Source Type: Journal    
DOI: 10.1117/1.JRS.11.042620     Document Type: Article
Times cited : (67)

References (67)
  • 1
    • 84930079709 scopus 로고    scopus 로고
    • Recent advances on 2D and 3D change detection in urban environments from remote sensing data
    • M. Helbich, J. Jokar Arsanjani, and M. Leitner, Eds., Geotechnologies and the Environment Springer International Publishing
    • K. Karantzalos, "Recent advances on 2D and 3D change detection in urban environments from remote sensing data, " in Computational Approaches for Urban Environments, M. Helbich, J. Jokar Arsanjani, and M. Leitner, Eds., Geotechnologies and the Environment, Vol. 13, pp. 237-272, Springer International Publishing (2015).
    • (2015) Computational Approaches for Urban Environments , vol.13 , pp. 237-272
    • Karantzalos, K.1
  • 2
    • 84938939255 scopus 로고    scopus 로고
    • Selective 4D modelling framework for spatialoral land information management system
    • A. Doulamis, et al., "Selective 4D modelling framework for spatialoral land information management system, " Proc. SPIE 9535, 953506 (2015).
    • (2015) Proc. SPIE , vol.9535 , pp. 953506
    • Doulamis, A.1
  • 3
    • 84992071289 scopus 로고    scopus 로고
    • 5D Modelling: An efficient approach for creating spatiotemporal predictive 3D maps of large-scale cultural resources
    • A. Doulamis, et al., "5D Modelling: An efficient approach for creating spatiotemporal predictive 3D maps of large-scale cultural resources, " in ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Vol. II-5/W3, pp. 61-68 (2016).
    • (2016) ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences , vol.2-5 , Issue.W3 , pp. 61-68
    • Doulamis, A.1
  • 4
    • 0032648673 scopus 로고    scopus 로고
    • Automatic object extraction from aerial imagery-a survey focusing on buildings
    • H. Mayer, "Automatic object extraction from aerial imagery-a survey focusing on buildings, " Comput. Vision Image Understand 74(2), 138-149 (1999).
    • (1999) Comput. Vision Image Understand , vol.74 , Issue.2 , pp. 138-149
    • Mayer, H.1
  • 5
    • 84962569483 scopus 로고    scopus 로고
    • Deep supervised learning for hyperspectral data classification through convolutional neural networks
    • K. Makantasis, et al., "Deep supervised learning for hyperspectral data classification through convolutional neural networks, " in IEEE Int. Geoscience and Remote Sensing Symp. (IGARSS), pp. 4959-4962 (2015).
    • (2015) IEEE Int. Geoscience and Remote Sensing Symp. (IGARSS) , pp. 4959-4962
    • Makantasis, K.1
  • 6
    • 84962609502 scopus 로고    scopus 로고
    • An automatic building extraction and regularisation technique using LIDAR point cloud data and orthoimage
    • S. A. N. Gilani, M. Awrangjeb, and G. Lu, "An automatic building extraction and regularisation technique using LIDAR point cloud data and orthoimage, " Remote Sens. 8(3), 258 (2016).
    • (2016) Remote Sens. , vol.8 , Issue.3 , pp. 258
    • Gilani, S.A.N.1    Awrangjeb, M.2    Lu, G.3
  • 7
    • 80052653912 scopus 로고    scopus 로고
    • Evaluation of automatic building detection approaches combining high resolution images and LIDAR data
    • T. Hermosilla, et al., "Evaluation of automatic building detection approaches combining high resolution images and LIDAR data, " Remote Sens. 3(6), 1188-1210 (2011).
    • (2011) Remote Sens. , vol.3 , Issue.6 , pp. 1188-1210
    • Hermosilla, T.1
  • 8
    • 0036537472 scopus 로고    scopus 로고
    • A taxonomy and evaluation of dense two-frame stereo correspondence algorithm
    • D. Scharstein and R. Szeliski, "A taxonomy and evaluation of dense two-frame stereo correspondence algorithm, " Int. J. Comput. Vision 47(1), 7-42 (2002).
    • (2002) Int. J. Comput. Vision , vol.47 , Issue.1 , pp. 7-42
    • Scharstein, D.1    Szeliski, R.2
  • 9
    • 84989877761 scopus 로고    scopus 로고
    • LIDAR vs dense image matching point clouds in complex urban scenes
    • E. Maltezos, A. Kyrkou, and C. Ioannidis, "LIDAR vs dense image matching point clouds in complex urban scenes, " Proc. SPIE 9688, 96881P (2016).
    • (2016) Proc. SPIE , vol.9688 , pp. 96881P
    • Maltezos, E.1    Kyrkou, A.2    Ioannidis, C.3
  • 10
    • 67651002632 scopus 로고    scopus 로고
    • Evaluation of stereo matching costs on images with radiometric differences
    • H. Hirschmüller and D. Scharstein, "Evaluation of stereo matching costs on images with radiometric differences, " IEEE Trans. Pattern Anal. Mach. Intell. 31(9), 1582-1599 (2009).
    • (2009) IEEE Trans. Pattern Anal. Mach. Intell. , vol.31 , Issue.9 , pp. 1582-1599
    • Hirschmüller, H.1    Scharstein, D.2
  • 11
    • 84896768090 scopus 로고    scopus 로고
    • Dense image matching: Comparisons and analyses
    • F. Remondino, et al., "Dense image matching: Comparisons and analyses, " in Proc. Digital Heritage Int. Congress, pp. 47-54 (2013).
    • (2013) Proc. Digital Heritage Int. Congress , pp. 47-54
    • Remondino, F.1
  • 12
    • 84895753715 scopus 로고    scopus 로고
    • On accurate dense stereo-matching using a local adaptive multi-cost approach
    • C. Stentoumis, et al., "On accurate dense stereo-matching using a local adaptive multi-cost approach, " ISPRS J. Photogramm. Remote Sens. 91, 29-49 (2014).
    • (2014) ISPRS J. Photogramm. Remote Sens. , vol.91 , pp. 29-49
    • Stentoumis, C.1
  • 15
    • 84865250653 scopus 로고    scopus 로고
    • Multiray photogrammetry and dense image matching
    • D. Fritsch, Ed Herbert Wichmann Verlag, Heidelberg, Germany
    • N. Haala, "Multiray photogrammetry and dense image matching, " in 53rd Photogrammetric Week, D. Fritsch, Ed., pp. 185-195, Herbert Wichmann Verlag, Heidelberg, Germany (2011).
    • (2011) 53rd Photogrammetric Week , pp. 185-195
    • Haala, N.1
  • 17
    • 84978062704 scopus 로고    scopus 로고
    • Knowledge based 3D building model recognition using convolutional neural networks from LIDAR and aerial imageries
    • F. Alidoost and H. Arefi, "Knowledge based 3D building model recognition using convolutional neural networks from LIDAR and aerial imageries, " in ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Vol. XLI-B3, pp. 833-840 (2016).
    • (2016) ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences , vol.41 , Issue.B3 , pp. 833-840
    • Alidoost, F.1    Arefi, H.2
  • 19
    • 84860499329 scopus 로고    scopus 로고
    • Creating large-scale city models from 3D-point clouds: A robust approach with hybrid representation
    • F. Lafarge and C. Mallet, "Creating large-scale city models from 3D-point clouds: A robust approach with hybrid representation, " Int. J. Comput. Vision 99(1), 69-85 (2012).
    • (2012) Int. J. Comput. Vision , vol.99 , Issue.1 , pp. 69-85
    • Lafarge, F.1    Mallet, C.2
  • 22
    • 84937823094 scopus 로고    scopus 로고
    • Building extraction from airborne laser scanning data: An analysis of the state of the art
    • I. Tomljenovic, et al., "Building extraction from airborne laser scanning data: An analysis of the state of the art, " Remote Sens. 7(4), 3826-3862 (2015).
    • (2015) Remote Sens. , vol.7 , Issue.4 , pp. 3826-3862
    • Tomljenovic, I.1
  • 23
    • 84902353397 scopus 로고    scopus 로고
    • Results of the ISPRS benchmark on urban object detection and 3D building reconstruction
    • F. Rottensteiner, et al., "Results of the ISPRS benchmark on urban object detection and 3D building reconstruction, " ISPRS J. Photogramm. Remote Sens. 93, 256-271 (2014).
    • (2014) ISPRS J. Photogramm. Remote Sens. , vol.93 , pp. 256-271
    • Rottensteiner, F.1
  • 25
    • 80054003619 scopus 로고    scopus 로고
    • A new classification method for LIDAR data based on unbalanced support vector machine
    • W. Xin, et al., "A new classification method for LIDAR data based on unbalanced support vector machine, " in Proc. Image and Data Fusion (ISIDF), pp. 1-4 (2011).
    • (2011) Proc. Image and Data Fusion (ISIDF) , pp. 1-4
    • Xin, W.1
  • 26
    • 84884788807 scopus 로고    scopus 로고
    • SVM-based classification of segmented airborne LIDAR point clouds in urban areas
    • J. Zhang, X. Lin, and X. Ning, "SVM-based classification of segmented airborne LIDAR point clouds in urban areas, " Remote Sens. 5(8), 3749-3775 (2013).
    • (2013) Remote Sens. , vol.5 , Issue.8 , pp. 3749-3775
    • Zhang, J.1    Lin, X.2    Ning, X.3
  • 27
    • 85011360348 scopus 로고    scopus 로고
    • Deep neural networks for above-ground detection in very high spatial resolution digital elevation models
    • D. Marmanis, et al., "Deep neural networks for above-ground detection in very high spatial resolution digital elevation models, " in ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Vol. II-3/W4, pp. 103-110 (2015).
    • (2015) ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences , vol.2-3 , Issue.W4 , pp. 103-110
    • Marmanis, D.1
  • 29
    • 85034983308 scopus 로고    scopus 로고
    • Benchmarking deep learning frameworks for the classification of very high resolution satellite multispectral data
    • M. Papadomanolaki, et al., "Benchmarking deep learning frameworks for the classification of very high resolution satellite multispectral data, " in ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Vol. III-7, pp. 83-88 (2016).
    • (2016) ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences , vol.3-7 , pp. 83-88
    • Papadomanolaki, M.1
  • 31
    • 34249781992 scopus 로고    scopus 로고
    • Building detection by fusion of airborne laser scanner data and multi-spectral images: Performance evaluation and sensitivity analysis
    • F. Rottensteiner, et al., "Building detection by fusion of airborne laser scanner data and multi-spectral images: Performance evaluation and sensitivity analysis, " ISPRS J. Photogramm. Remote Sens. 62(2), 135-149 (2007).
    • (2007) ISPRS J. Photogramm. Remote Sens. , vol.62 , Issue.2 , pp. 135-149
    • Rottensteiner, F.1
  • 32
    • 65949106602 scopus 로고    scopus 로고
    • Fusion of LIDAR and aerial imagery for accurate building footprint extraction
    • S. Zabuawala, et al., "Fusion of LIDAR and aerial imagery for accurate building footprint extraction, " Proc. SPIE 7251, 72510Z (2009).
    • (2009) Proc. SPIE , vol.7251 , pp. 72510Z
    • Zabuawala, S.1
  • 33
    • 84873140513 scopus 로고    scopus 로고
    • Complex building roof detection and strict description from LIDAR data and orthorectified aerial imagery
    • S. Sun and C. Salvaggio, "Complex building roof detection and strict description from LIDAR data and orthorectified aerial imagery, " in IEEE Int. Geoscience and Remote Sensing Symp. (IGARSS), pp. 5466-5469 (2012).
    • (2012) IEEE Int. Geoscience and Remote Sensing Symp. (IGARSS) , pp. 5466-5469
    • Sun, S.1    Salvaggio, C.2
  • 34
    • 84888787649 scopus 로고    scopus 로고
    • Fusion of airborne laserscanning point clouds and images for supervised and unsupervised scene classification
    • M. Gerke and J. Xiao, "Fusion of airborne laserscanning point clouds and images for supervised and unsupervised scene classification, " ISPRS J. Photogramm. Remote Sens. 87, 78-92 (2014).
    • (2014) ISPRS J. Photogramm. Remote Sens. , vol.87 , pp. 78-92
    • Gerke, M.1    Xiao, J.2
  • 35
    • 85017644326 scopus 로고    scopus 로고
    • Synergistic use of LIDAR and APEX hyperspectral data for high-resolution urban land cover mapping
    • F. Priem and F. Canters, "Synergistic use of LIDAR and APEX hyperspectral data for high-resolution urban land cover mapping, " Remote Sens. 8(10), 787 (2016).
    • (2016) Remote Sens. , vol.8 , Issue.10 , pp. 787
    • Priem, F.1    Canters, F.2
  • 36
    • 84971612769 scopus 로고    scopus 로고
    • Classification and segmentation of satellite orthoimagery using convolutional neural networks
    • M. Längkvist, et al., "Classification and segmentation of satellite orthoimagery using convolutional neural networks, " Remote Sens. 8(4), 329 (2016).
    • (2016) Remote Sens. , vol.8 , Issue.4 , pp. 329
    • Längkvist, M.1
  • 40
    • 84979608665 scopus 로고    scopus 로고
    • Classification of urban aerial data based on pixel labelling with deep convolutional neural networks and logistic regression
    • W. Yao, P. Poleswki, and P. Krzystek, "Classification of urban aerial data based on pixel labelling with deep convolutional neural networks and logistic regression, " in ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Vol. XLI-B7, pp. 405-410 (2016).
    • (2016) ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences , vol.41 , Issue.B7 , pp. 405-410
    • Yao, W.1    Poleswki, P.2    Krzystek, P.3
  • 41
    • 84983804553 scopus 로고    scopus 로고
    • Review of automatic feature extraction from high-resolution optical sensor data for UAV-based cadastral mapping
    • S. Crommelinck, et al., "Review of automatic feature extraction from high-resolution optical sensor data for UAV-based cadastral mapping, " Remote Sens. 8(8), 689 (2016).
    • (2016) Remote Sens. , vol.8 , Issue.8 , pp. 689
    • Crommelinck, S.1
  • 42
    • 85008367727 scopus 로고    scopus 로고
    • Building segmentation and outline extraction from UAV image-derived point clouds by a line growing algorithm
    • Y. Dai, et al., "Building segmentation and outline extraction from UAV image-derived point clouds by a line growing algorithm, " Int. J. Digital Earth 10(11), 1077-1097 (2017).
    • (2017) Int. J. Digital Earth , vol.10 , Issue.11 , pp. 1077-1097
    • Dai, Y.1
  • 43
    • 84867706982 scopus 로고    scopus 로고
    • Fast and adaptive deep fusion learning for detecting visual objects
    • N. Doulamis and A. Doulamis, "Fast and adaptive deep fusion learning for detecting visual objects, " Lect. Notes Comput. Sci. 7585, 345-354 (2012).
    • (2012) Lect. Notes Comput. Sci. , vol.7585 , pp. 345-354
    • Doulamis, N.1    Doulamis, A.2
  • 44
    • 84949928730 scopus 로고    scopus 로고
    • Semi-supervised deep learning for object tracking and classification
    • N. Doulamis and A. Doulamis, "Semi-supervised deep learning for object tracking and classification, " in IEEE Int. Conf. on Image Processing (ICIP), pp. 848-852 (2014).
    • (2014) IEEE Int. Conf. On Image Processing (ICIP) , pp. 848-852
    • Doulamis, N.1    Doulamis, A.2
  • 45
    • 84974785092 scopus 로고    scopus 로고
    • An easy-to-use airborne LIDAR data filtering method based on cloth simulation
    • W. Zhang, et al., "An easy-to-use airborne LIDAR data filtering method based on cloth simulation, " Remote Sens. 8(6) 501 (2016).
    • (2016) Remote Sens. , vol.8 , Issue.6 , pp. 501
    • Zhang, W.1
  • 46
    • 0033640657 scopus 로고    scopus 로고
    • On line retrainable neural networks: Improving the performance of neural network in image analysis problems
    • A. Doulamis, N. Doulamis, and S. D. Kollias, "On line retrainable neural networks: Improving the performance of neural network in image analysis problems, " IEEE Trans. Neural Networks 11(1), 137-155, (2000).
    • (2000) IEEE Trans. Neural Networks , vol.11 , Issue.1 , pp. 137-155
    • Doulamis, A.1    Doulamis, N.2    Kollias, S.D.3
  • 47
    • 0012924985 scopus 로고    scopus 로고
    • The MathWorks 10 June
    • The MathWorks, "MATLAB software, " https://in.mathworks.com/products/matlab.html (10 June 2017).
    • (2017) MATLAB Software
  • 48
    • 85029768261 scopus 로고    scopus 로고
    • Python Software Foundation 10 June
    • Python Software Foundation, "The Python language reference, " https://docs.python.org/2/reference/#the-python-language-reference (10 June 2017).
    • (2017) The Python Language Reference
  • 49
    • 79958822032 scopus 로고    scopus 로고
    • The DGPF-test on digital airborne camera evaluation-overview and test design
    • M. Cramer, "The DGPF-test on digital airborne camera evaluation-overview and test design, " Photogramm. Fernerkundung Geoinf. 2010(2), 73-82 (2010).
    • (2010) Photogramm. Fernerkundung Geoinf. , vol.2010 , Issue.2 , pp. 73-82
    • Cramer, M.1
  • 50
    • 85038603067 scopus 로고    scopus 로고
    • Trimble Geospatial 10 June
    • Trimble Geospatial, "Trimble Inpho software, " http://www.trimble.com/imaging/inpho. aspx (10 June 2017).
    • (2017) Trimble Inpho Software
  • 51
    • 85038560163 scopus 로고    scopus 로고
    • Hexagon Geospatial 10 June
    • Hexagon Geospatial, "Erdas imagine software, " http://www.hexagongeospatial.com/products/power-portfolio/erdas-imagine (10 June 2017).
    • (2017) Erdas Imagine Software
  • 53
    • 33748275323 scopus 로고    scopus 로고
    • Evaluation of relevance feedback schemes in content-based in retrieval systems
    • N. Doulamis and A. Doulamis, "Evaluation of relevance feedback schemes in content-based in retrieval systems, " Signal Process. Image Commun. 21(4), 334-357 (2006).
    • (2006) Signal Process. Image Commun. , vol.21 , Issue.4 , pp. 334-357
    • Doulamis, N.1    Doulamis, A.2
  • 54
  • 58
    • 80555140075 scopus 로고    scopus 로고
    • Scikit-learn: Machine learning in Python
    • F. Pedregosaet al., "Scikit-learn: Machine learning in Python, " J. Mach. Learn. Res. 12, 2825-2830 (2011).
    • (2011) J. Mach. Learn. Res. , vol.12 , pp. 2825-2830
    • Pedregosa, F.1
  • 59
    • 85004028972 scopus 로고    scopus 로고
    • FAST-MDL: Fast adaptive supervised training of multi-layered deep learning models for consistent object tracking and classification
    • N. Doulamis and A. Voulodimos, "FAST-MDL: Fast adaptive supervised training of multi-layered deep learning models for consistent object tracking and classification, " in IEEE Int. Conf. on Imaging Systems and Techniques (IST), pp. 318-323 (2016).
    • (2016) IEEE Int. Conf. On Imaging Systems and Techniques (IST) , pp. 318-323
    • Doulamis, N.1    Voulodimos, A.2
  • 61
    • 84902303011 scopus 로고    scopus 로고
    • Context based automatic reconstruction and texturing of 3D urban terrain for quick response tasks
    • D. Bulatov, et al., "Context based automatic reconstruction and texturing of 3D urban terrain for quick response tasks, " ISPRS J. Photogramm. Remote Sens. 93, 157-170 (2014).
    • (2014) ISPRS J. Photogramm. Remote Sens. , vol.93 , pp. 157-170
    • Bulatov, D.1
  • 62
    • 84864183141 scopus 로고    scopus 로고
    • Building detection in complex scenes through effective separation of buildings from trees
    • M. Awrangjeb, C. Zhang, and C. S. Fraser, "Building detection in complex scenes through effective separation of buildings from trees, " Photogramm. Eng. Remote Sens. 78(7), 729-745 (2012).
    • (2012) Photogramm. Eng. Remote Sens. , vol.78 , Issue.7 , pp. 729-745
    • Awrangjeb, M.1    Zhang, C.2    Fraser, C.S.3
  • 65
    • 85031041634 scopus 로고    scopus 로고
    • Adaboost-based feature relevance assessment in fusing LiDAR and image data for classification of trees and vehicles in urban scenes
    • Y. Wei, et al., "Adaboost-based feature relevance assessment in fusing LiDAR and image data for classification of trees and vehicles in urban scenes, " in ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Vol. I-7, pp. 323-328 (2012).
    • (2012) ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences , vol.1-7 , pp. 323-328
    • Wei, Y.1
  • 67
    • 85038578549 scopus 로고    scopus 로고
    • Deutsche Gesellschaft für Photogrammetrie, Fernerkundung und Geoinformation e.V 10 June
    • "Deutsche Gesellschaft für Photogrammetrie, Fernerkundung und Geoinformation e.V., " German Society for Photogrammetry, Remote Sensing and Geoinformation, http://www. ifp.uni-stuttgart.de/dgpf/DKEP-Allg.html (10 June 2017).
    • (2017) German Society for Photogrammetry, Remote Sensing and Geoinformation


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.