-
2
-
-
51749124303
-
Constructing inverse probability weights for marginal structural models
-
Cole S. R., Hernán M. A., (2008). Constructing inverse probability weights for marginal structural models. American Journal of Epidemiology, 168, 656–664.
-
(2008)
American Journal of Epidemiology
, vol.168
, pp. 656-664
-
-
Cole, S.R.1
Hernán, M.A.2
-
4
-
-
40549104115
-
Misunderstandings between experimentalists and observationalists about causal inference
-
Imai K., King G., Stuart E. A., (2008). Misunderstandings between experimentalists and observationalists about causal inference. Journal of the Royal Statistical Society, Series A, 171, 481–502.
-
(2008)
Journal of the Royal Statistical Society, Series A
, vol.171
, pp. 481-502
-
-
Imai, K.1
King, G.2
Stuart, E.A.3
-
5
-
-
0003446318
-
-
Wiley Series in Probability and Mathematical Statistics, New York, NY, Wiley
-
Johnson N. L., Kotz S., (1971). Distributions in statistics: Continuous univariate distributions (Vol. 1, Wiley Series in Probability and Mathematical Statistics). New York, NY: Wiley.
-
(1971)
Distributions in statistics: Continuous univariate distributions
, vol.1
-
-
Johnson, N.L.1
Kotz, S.2
-
6
-
-
84886009116
-
The impact of Indiana’s system of interim assessments on mathematics and reading achievement
-
Konstantopoulos S., Miller S., van der Ploeg A., (2013). The impact of Indiana’s system of interim assessments on mathematics and reading achievement. Educational Evaluation and Policy Analysis, 35, 481–499.
-
(2013)
Educational Evaluation and Policy Analysis
, vol.35
, pp. 481-499
-
-
Konstantopoulos, S.1
Miller, S.2
van der Ploeg, A.3
-
8
-
-
0035044501
-
Validating recommendations for coronary angiography following an acute myocardial infarction in the elderly: A matched analysis using propensity scores
-
Normand S. L. T., Landrum M. B., Guadagnoli E., Ayanian J. Z., Ryan T. J., Cleary P. D., McNeil B. J., (2001). Validating recommendations for coronary angiography following an acute myocardial infarction in the elderly: A matched analysis using propensity scores. Journal of Clinical Epidemiology, 54, 387–398.
-
(2001)
Journal of Clinical Epidemiology
, vol.54
, pp. 387-398
-
-
Normand, S.L.T.1
Landrum, M.B.2
Guadagnoli, E.3
Ayanian, J.Z.4
Ryan, T.J.5
Cleary, P.D.6
McNeil, B.J.7
-
9
-
-
84871975599
-
External validity in policy evaluations that choose sites purposively
-
Olsen R. B., Orr L. L., Bell S. H., Stuart E. A., (2013). External validity in policy evaluations that choose sites purposively. Journal of Policy Analysis and Management, 32, 107–121.
-
(2013)
Journal of Policy Analysis and Management
, vol.32
, pp. 107-121
-
-
Olsen, R.B.1
Orr, L.L.2
Bell, S.H.3
Stuart, E.A.4
-
11
-
-
84929079701
-
2014 Rossi award lecture: Beyond internal validity
-
Orr L. L., (2015). 2014 Rossi award lecture: Beyond internal validity. Evaluation Review, 39, 167–178. doi:10.1177/0193841X15573659
-
(2015)
Evaluation Review
, vol.39
, pp. 167-178
-
-
Orr, L.L.1
-
12
-
-
84914179053
-
-
Vienna, Austria, R Foundation for Statistical Computing, Retrieved from
-
R Core Team. (2014). R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. Retrieved from http://www.R-project.org/
-
(2014)
R: A language and environment for statistical computing
-
-
-
13
-
-
77951622706
-
The central role of the propensity score in observational studies for causal effects
-
Rosenbaum P. R., Rubin D. B., (1983). The central role of the propensity score in observational studies for causal effects. Biometrika, 70, 41–55.
-
(1983)
Biometrika
, vol.70
, pp. 41-55
-
-
Rosenbaum, P.R.1
Rubin, D.B.2
-
14
-
-
84949193513
-
Reducing bias in observational studies using subclassification on the propensity score
-
Rosenbaum P. R., Rubin D. B., (1984). Reducing bias in observational studies using subclassification on the propensity score. Journal of the American Statistical Association, 79, 516–524.
-
(1984)
Journal of the American Statistical Association
, vol.79
, pp. 516-524
-
-
Rosenbaum, P.R.1
Rubin, D.B.2
-
15
-
-
58149417330
-
Estimating causal effects of treatments in randomized and nonrandomized studies
-
Rubin D. B., (1974). Estimating causal effects of treatments in randomized and nonrandomized studies. Journal of Educational Psychology, 66, 688–701.
-
(1974)
Journal of Educational Psychology
, vol.66
, pp. 688-701
-
-
Rubin, D.B.1
-
16
-
-
0002531157
-
Bayesian inference for causal effects: The role of randomization
-
Rubin D. B., (1978). Bayesian inference for causal effects: The role of randomization. Annals of Statistics, 6, 34–58.
-
(1978)
Annals of Statistics
, vol.6
, pp. 34-58
-
-
Rubin, D.B.1
-
17
-
-
0000810054
-
Discussion of “randomization analysis of experimental data in the Fisher randomization test” by D. Basu
-
Rubin D. B., (1980). Discussion of “randomization analysis of experimental data in the Fisher randomization test” by D. Basu. Journal of the American Statistical Association, 74, 318–328.
-
(1980)
Journal of the American Statistical Association
, vol.74
, pp. 318-328
-
-
Rubin, D.B.1
-
18
-
-
84972506931
-
Neyman (1923) and causal inference in experiments and observational studies
-
Rubin D. B., (1990). Neyman (1923) and causal inference in experiments and observational studies. Statistical Science, 5, 472–480.
-
(1990)
Statistical Science
, vol.5
, pp. 472-480
-
-
Rubin, D.B.1
-
19
-
-
0035761763
-
Using propensity scores to help design observational studies: Application to the tobacco litigation
-
Rubin D. B., (2001). Using propensity scores to help design observational studies: Application to the tobacco litigation. Health Services & Outcomes Research Methodology, 2, 169–188.
-
(2001)
Health Services & Outcomes Research Methodology
, vol.2
, pp. 169-188
-
-
Rubin, D.B.1
-
20
-
-
84921343508
-
-
NCEE 2014–4017, Washington, DC, U.S. Department of Education, Institute of Education Sciences, National Center for Education Evaluation and Regional Assistance, Analytic Technical Assistance and Development, Retrieved from
-
Schochet P. Z., Puma M., Deke J., (2014). Understanding variation in treatment effects in education impact evaluations: An overview of quantitative methods (NCEE 2014–4017). Washington, DC: U.S. Department of Education, Institute of Education Sciences, National Center for Education Evaluation and Regional Assistance, Analytic Technical Assistance and Development. Retrieved from http://ies.ed.gov/ncee/edlabs
-
(2014)
Understanding variation in treatment effects in education impact evaluations: An overview of quantitative methods
-
-
Schochet, P.Z.1
Puma, M.2
Deke, J.3
-
22
-
-
77956791074
-
The importance of covariate selection in controlling for selection bias in observational studies
-
Steiner P. M., Cook T. D., Shadish W. R., Clark M. H., (2010). The importance of covariate selection in controlling for selection bias in observational studies. Psychological Methods, 15, 250–267.
-
(2010)
Psychological Methods
, vol.15
, pp. 250-267
-
-
Steiner, P.M.1
Cook, T.D.2
Shadish, W.R.3
Clark, M.H.4
-
23
-
-
77957806232
-
Matching methods for causal inference: A review and a look forward
-
Stuart E. A., (2010). Matching methods for causal inference: A review and a look forward. Statistical Science, 25, 1–21.
-
(2010)
Statistical Science
, vol.25
, pp. 1-21
-
-
Stuart, E.A.1
-
24
-
-
85036525110
-
Assessing the generalizability of randomized trial results to target populations
-
Stuart E. A., Bradshaw C. P., Leaf P. J., (2014). Assessing the generalizability of randomized trial results to target populations. Prevention Science, 16, 1–11.
-
(2014)
Prevention Science
, vol.16
, pp. 1-11
-
-
Stuart, E.A.1
Bradshaw, C.P.2
Leaf, P.J.3
-
25
-
-
79952586276
-
The use of propensity scores to assess the generalizability of results from randomized trials
-
Stuart E. A., Cole S. R., Bradshaw C. P., Leaf P. J., (2011). The use of propensity scores to assess the generalizability of results from randomized trials. Journal of the Royal Statistical Society, Series A, 2, 369–386.
-
(2011)
Journal of the Royal Statistical Society, Series A
, vol.2
, pp. 369-386
-
-
Stuart, E.A.1
Cole, S.R.2
Bradshaw, C.P.3
Leaf, P.J.4
-
26
-
-
84877984187
-
Improving generalizations from experiments using propensity score subclassification: Assumptions, properties, and contexts
-
Tipton E., (2013). Improving generalizations from experiments using propensity score subclassification: Assumptions, properties, and contexts. Journal of Educational and Behavioral Statistics, 38, 239–266.
-
(2013)
Journal of Educational and Behavioral Statistics
, vol.38
, pp. 239-266
-
-
Tipton, E.1
-
27
-
-
84919426986
-
How generalizable is your experiment? Comparing a sample and population through a generalizability index
-
a)
-
Tipton E., (2014a). How generalizable is your experiment? Comparing a sample and population through a generalizability index. Journal of Educational and Behavioral Statistics, 39, 478–501.
-
(2014)
Journal of Educational and Behavioral Statistics
, vol.39
, pp. 478-501
-
-
Tipton, E.1
-
28
-
-
84898869520
-
Stratified sampling using cluster analysis: A sample selection strategy for improved generalizations from experiments
-
b)
-
Tipton E., (2014b). Stratified sampling using cluster analysis: A sample selection strategy for improved generalizations from experiments. Evaluation Review, 37, 109–139.
-
(2014)
Evaluation Review
, vol.37
, pp. 109-139
-
-
Tipton, E.1
-
29
-
-
84892380430
-
Sample selection in randomized experiments: A new method using propensity score stratified sampling
-
Tipton E., Hedges L. V., Vaden-Kiernan M., Borman G. D., Sullivan K., Caverly S., (2014). Sample selection in randomized experiments: A new method using propensity score stratified sampling. Journal of Research on Educational Effectiveness, 7, 114–135.
-
(2014)
Journal of Research on Educational Effectiveness
, vol.7
, pp. 114-135
-
-
Tipton, E.1
Hedges, L.V.2
Vaden-Kiernan, M.3
Borman, G.D.4
Sullivan, K.5
Caverly, S.6
|