메뉴 건너뛰기




Volumn 114, Issue 48, 2017, Pages 12827-12832

Brain network dynamics are hierarchically organized in time

Author keywords

Dynamic functional connectivity; Hidden Markov model; Metastates; Resting state networks

Indexed keywords

ARTICLE; BEHAVIOR; CONNECTOME; FUNCTIONAL CONNECTIVITY; FUNCTIONAL MAGNETIC RESONANCE IMAGING; HUMAN; METASTATE; NEUROIMAGING; PRIORITY JOURNAL; PROBABILITY; RESTING STATE NETWORK; THERMODYNAMICS; TIME SERIES ANALYSIS; ADULT; ANATOMY AND HISTOLOGY; BIOLOGICAL MODEL; BRAIN; BRAIN MAPPING; COGNITION; DIAGNOSTIC IMAGING; FEMALE; MALE; NERVE CELL NETWORK; NERVE TRACT; NUCLEAR MAGNETIC RESONANCE IMAGING; PHYSIOLOGY; QUANTITATIVE TRAIT; REST; TASK PERFORMANCE; TIME FACTOR;

EID: 85035199228     PISSN: 00278424     EISSN: 10916490     Source Type: Journal    
DOI: 10.1073/pnas.1705120114     Document Type: Article
Times cited : (541)

References (49)
  • 1
    • 33748796093 scopus 로고    scopus 로고
    • Consistent resting-state networks across healthy subjects
    • Damoiseaux JS, et al. (2006) Consistent resting-state networks across healthy subjects. Proc Natl Acad Sci USA 103:13848–13853.
    • (2006) Proc Natl Acad Sci USA , vol.103 , pp. 13848-13853
    • Damoiseaux, J.S.1
  • 2
    • 31844433315 scopus 로고    scopus 로고
    • FMRI resting state networks define distinct modes of long-distance interactions in the human brain
    • De Luca M, Beckmann CF, De Stefano N, Matthews PM, Smith SM (2006) fMRI resting state networks define distinct modes of long-distance interactions in the human brain. Neuroimage 29:1359–1367.
    • (2006) Neuroimage , vol.29 , pp. 1359-1367
    • De Luca, M.1    Beckmann, C.F.2    De Stefano, N.3    Matthews, P.M.4    Smith, S.M.5
  • 3
    • 0035895264 scopus 로고    scopus 로고
    • A default mode of brain function
    • Raichle ME, et al. (2001) A default mode of brain function. Proc Natl Acad Sci USA 98:676–682.
    • (2001) Proc Natl Acad Sci USA , vol.98 , pp. 676-682
    • Raichle, M.E.1
  • 4
    • 69149106062 scopus 로고    scopus 로고
    • Correspondence of the brain’s functional architecture during activation and rest
    • Smith SM, et al. (2009) Correspondence of the brain’s functional architecture during activation and rest. Proc Natl Acad Sci USA 106:13040–13045.
    • (2009) Proc Natl Acad Sci USA , vol.106 , pp. 13040-13045
    • Smith, S.M.1
  • 5
    • 84989880517 scopus 로고    scopus 로고
    • History-dependent variability in population dynamics during evidence accumulation in cortex
    • Morcos AS, Harvey CD (2016) History-dependent variability in population dynamics during evidence accumulation in cortex. Nat Neurosci 19:1672–1681.
    • (2016) Nat Neurosci , vol.19 , pp. 1672-1681
    • Morcos, A.S.1    Harvey, C.D.2
  • 6
    • 78650972934 scopus 로고    scopus 로고
    • Spontaneous cortical activity reveals hallmarks of an optimal internal model of the environment
    • Berkes P, Orbán G, Lengyel M, Fiser J (2011) Spontaneous cortical activity reveals hallmarks of an optimal internal model of the environment. Science 331:83–87.
    • (2011) Science , vol.331 , pp. 83-87
    • Berkes, P.1    Orbán, G.2    Lengyel, M.3    Fiser, J.4
  • 7
    • 22144469412 scopus 로고    scopus 로고
    • The human brain is intrinsically organized into dynamic, anti-correlated functional networks
    • Fox MD, et al. (2005) The human brain is intrinsically organized into dynamic, anti-correlated functional networks. Proc Natl Acad Sci USA 102:9673–9678.
    • (2005) Proc Natl Acad Sci USA , vol.102 , pp. 9673-9678
    • Fox, M.D.1
  • 8
    • 80053292350 scopus 로고    scopus 로고
    • Scale-free properties of the functional magnetic resonance imaging signal during rest and task
    • He BJ (2011) Scale-free properties of the functional magnetic resonance imaging signal during rest and task. J Neurosci 31:13786–13795.
    • (2011) J Neurosci , vol.31 , pp. 13786-13795
    • He, B.J.1
  • 10
    • 84992378782 scopus 로고    scopus 로고
    • The dynamics of functional brain networks: Integrated network states during cognitive task performance
    • Shine JM, et al. (2016) The dynamics of functional brain networks: Integrated network states during cognitive task performance. Neuron 92:544–554.
    • (2016) Neuron , vol.92 , pp. 544-554
    • Shine, J.M.1
  • 11
    • 35348876868 scopus 로고    scopus 로고
    • Dynamics of spontaneous transitions between global brain states
    • Ito J, Nikolaev AR, van Leeuwen C (2007) Dynamics of spontaneous transitions between global brain states. Hum Brain Mapp 28:904–913.
    • (2007) Hum Brain Mapp , vol.28 , pp. 904-913
    • Ito, J.1    Nikolaev, A.R.2    Van Leeuwen, C.3
  • 12
    • 84857566719 scopus 로고    scopus 로고
    • Multistability and metastability: Understanding dynamic coordination in the brain
    • Kelso JA (2012) Multistability and metastability: Understanding dynamic coordination in the brain. Philos Trans R Soc Lond B Biol Sci 367:906–918.
    • (2012) Philos Trans R Soc Lond B Biol Sci , vol.367 , pp. 906-918
    • Kelso, J.A.1
  • 13
    • 84907315625 scopus 로고    scopus 로고
    • Energy landscapes of resting-state brain networks
    • Watanabe T, et al. (2014) Energy landscapes of resting-state brain networks. Front Neuroinform 8:12.
    • (2014) Front Neuroinform , vol.8 , pp. 12
    • Watanabe, T.1
  • 14
    • 84926317380 scopus 로고    scopus 로고
    • On spurious and real fluctuations of dynamic functional connectivity during rest
    • Leonardi N, Van De Ville D (2015) On spurious and real fluctuations of dynamic functional connectivity during rest. Neuroimage 104:430–436.
    • (2015) Neuroimage , vol.104 , pp. 430-436
    • Leonardi, N.1    Van De Ville, D.2
  • 15
    • 84929712322 scopus 로고    scopus 로고
    • Towards a statistical test for functional connectivity dynamics
    • Zalesky A, Breakspear M (2015) Towards a statistical test for functional connectivity dynamics. Neuroimage 114:466–470.
    • (2015) Neuroimage , vol.114 , pp. 466-470
    • Zalesky, A.1    Breakspear, M.2
  • 16
    • 84952892201 scopus 로고    scopus 로고
    • Can sliding-window correlations reveal dynamic functional connectivity in resting-state fMRI?
    • Hindriks R, et al. (2016) Can sliding-window correlations reveal dynamic functional connectivity in resting-state fMRI? Neuroimage 127:242–256.
    • (2016) Neuroimage , vol.127 , pp. 242-256
    • Hindriks, R.1
  • 17
    • 85030163732 scopus 로고    scopus 로고
    • On the stability of BOLD fMRI correlations
    • Laumann TO, et al. (2017) On the stability of BOLD fMRI correlations. Cereb Cortex 27: 4719–4732.
    • (2017) Cereb Cortex , vol.27 , pp. 4719-4732
    • Laumann, T.O.1
  • 18
    • 84880325951 scopus 로고    scopus 로고
    • Resting-state fMRI in the Human Connectome Project
    • Smith SM, et al.; WU-Minn HCP Consortium (2013) Resting-state fMRI in the Human Connectome Project. Neuroimage 80:144–168.
    • (2013) Neuroimage , vol.80 , pp. 144-168
    • Smith, S.M.1
  • 19
    • 84898730827 scopus 로고    scopus 로고
    • Fast transient networks in spontaneous human brain activity
    • Baker AP, et al. (2014) Fast transient networks in spontaneous human brain activity. Elife 3:e01867.
    • (2014) Elife , vol.3 , pp. e01867
    • Baker, A.P.1
  • 20
    • 84949238941 scopus 로고    scopus 로고
    • Spectrally resolved fast transient brain states in electrophysiological data
    • Vidaurre D, et al. (2016) Spectrally resolved fast transient brain states in electrophysiological data. Neuroimage 126:81–95.
    • (2016) Neuroimage , vol.126 , pp. 81-95
    • Vidaurre, D.1
  • 21
    • 84908246606 scopus 로고    scopus 로고
    • The chronnectome: Time-varying connectivity networks as the next frontier in fMRI data discovery
    • Calhoun VD, Miller R, Pearlson G, Adalı T (2014) The chronnectome: Time-varying connectivity networks as the next frontier in fMRI data discovery. Neuron 84:262–274.
    • (2014) Neuron , vol.84 , pp. 262-274
    • Calhoun, V.D.1    Miller, R.2    Pearlson, G.3    Adalı, T.4
  • 24
    • 84945321578 scopus 로고    scopus 로고
    • A positive-negative mode of population covariation links brain connectivity, demographics and behavior
    • Smith SM, et al. (2015) A positive-negative mode of population covariation links brain connectivity, demographics and behavior. Nat Neurosci 18:1565–1567.
    • (2015) Nat Neurosci , vol.18 , pp. 1565-1567
    • Smith, S.M.1
  • 25
    • 85019591457 scopus 로고    scopus 로고
    • Heritability analysis with repeat measurements and its application to resting-state functional connectivity
    • Ge T, Holmes AJ, Buckner RL, Smoller JW, Sabuncu MR (2017) Heritability analysis with repeat measurements and its application to resting-state functional connectivity. Proc Natl Acad Sci USA 114:5521–5526.
    • (2017) Proc Natl Acad Sci USA , vol.114 , pp. 5521-5526
    • Ge, T.1    Holmes, A.J.2    Buckner, R.L.3    Smoller, J.W.4    Sabuncu, M.R.5
  • 26
    • 85030649292 scopus 로고    scopus 로고
    • The heritability of multi-modal connectivity in human brain activity
    • Colclough GL, et al. (2017) The heritability of multi-modal connectivity in human brain activity. Elife 6:e20178.
    • (2017) Elife , vol.6 , pp. e20178
    • Colclough, G.L.1
  • 27
    • 84899812494 scopus 로고    scopus 로고
    • Decoding wakefulness levels from typical fMRI resting-state data reveals reliable drifts between wakefulness and sleep
    • Tagliazucchi E, Laufs H (2014) Decoding wakefulness levels from typical fMRI resting-state data reveals reliable drifts between wakefulness and sleep. Neuron 82:695–708.
    • (2014) Neuron , vol.82 , pp. 695-708
    • Tagliazucchi, E.1    Laufs, H.2
  • 29
    • 78650467650 scopus 로고    scopus 로고
    • Modelling hierarchical structure in functional brain networks
    • Gleiser PM, Spoormaker VI (2010) Modelling hierarchical structure in functional brain networks. Philos Trans A Math Phys Eng Sci 368:5633–5644.
    • (2010) Philos Trans A Math Phys Eng Sci , vol.368 , pp. 5633-5644
    • Gleiser, P.M.1    Spoormaker, V.I.2
  • 30
    • 79959358464 scopus 로고    scopus 로고
    • Brain activity at rest: A multiscale hierarchical functional organization
    • Doucet G, et al. (2011) Brain activity at rest: A multiscale hierarchical functional organization. J Neurophysiol 105:2753–2763.
    • (2011) J Neurophysiol , vol.105 , pp. 2753-2763
    • Doucet, G.1
  • 31
    • 0043264383 scopus 로고    scopus 로고
    • Persistent activity in the prefrontal cortex during working memory
    • Curtis CE, D’Esposito M (2003) Persistent activity in the prefrontal cortex during working memory. Trends Cogn Sci 7:415–423.
    • (2003) Trends Cogn Sci , vol.7 , pp. 415-423
    • Curtis, C.E.1    D’Esposito, M.2
  • 32
    • 84994054768 scopus 로고    scopus 로고
    • Situating the default-mode network along a principal gradient of macroscale cortical organization
    • Margulies DS, et al. (2016) Situating the default-mode network along a principal gradient of macroscale cortical organization. Proc Natl Acad Sci USA 113:12574–12579.
    • (2016) Proc Natl Acad Sci USA , vol.113 , pp. 12574-12579
    • Margulies, D.S.1
  • 33
    • 84877102140 scopus 로고    scopus 로고
    • Distinguishing how from why the mind wanders: A process-occurrence framework for self-generated mental activity
    • Smallwood J (2013) Distinguishing how from why the mind wanders: A process-occurrence framework for self-generated mental activity. Psychol Bull 139:519–535.
    • (2013) Psychol Bull , vol.139 , pp. 519-535
    • Smallwood, J.1
  • 35
    • 0003561344 scopus 로고
    • Prentice Hall Series in Signal Processing (Prentice Hall, Upper Saddle River, NJ)
    • Marple SL (1986) Digital Spectral Analysis: With Applications, Prentice Hall Series in Signal Processing (Prentice Hall, Upper Saddle River, NJ).
    • (1986) Digital Spectral Analysis: With Applications
    • Marple, S.L.1
  • 37
    • 84984906747 scopus 로고    scopus 로고
    • How networks communicate: Propagation patterns in spontaneous brain activity
    • Mitra A, Raichle ME (2016) How networks communicate: Propagation patterns in spontaneous brain activity. Philos Trans R Soc Lond B Biol Sci 371:20150546.
    • (2016) Philos Trans R Soc Lond B Biol Sci , vol.371 , pp. 20150546
    • Mitra, A.1    Raichle, M.E.2
  • 38
    • 85029705227 scopus 로고    scopus 로고
    • Interpreting temporal fluctuations in resting-state functional connectivity MRI
    • September 12
    • Liégeois R, Laumann TO, Snyder AZ, Zhou J, Yeo BTT (September 12, 2017) Interpreting temporal fluctuations in resting-state functional connectivity MRI. Neuroimage, 10.1016/j.neuroimage.2017.09.012.
    • (2017) Neuroimage
    • Liégeois, R.1    Laumann, T.O.2    Snyder, A.Z.3    Zhou, J.4    Yeo, B.T.T.5
  • 39
    • 84888878720 scopus 로고    scopus 로고
    • Functional connectomics from resting-state fMRI
    • Smith SM, et al. (2013) Functional connectomics from resting-state fMRI. Trends Cogn Sci 17:666–682.
    • (2013) Trends Cogn Sci , vol.17 , pp. 666-682
    • Smith, S.M.1
  • 40
    • 84880332607 scopus 로고    scopus 로고
    • The minimal preprocessing pipelines for the Human Connectome Project
    • Glasser MF, et al.; WU-Minn HCP Consortium (2013) The minimal preprocessing pipelines for the Human Connectome Project. Neuroimage 80:105–124.
    • (2013) Neuroimage , vol.80 , pp. 105-124
    • Glasser, M.F.1
  • 41
    • 84899916725 scopus 로고    scopus 로고
    • ICA-based artefact removal and accelerated fMRI acquisition for improved resting state network imaging
    • Griffanti L, et al. (2014) ICA-based artefact removal and accelerated fMRI acquisition for improved resting state network imaging. Neuroimage 95:232–247.
    • (2014) Neuroimage , vol.95 , pp. 232-247
    • Griffanti, L.1
  • 43
    • 70350002327 scopus 로고    scopus 로고
    • Towards a functional neuroanatomy of pleasure and happiness
    • Kringelbach ML, Berridge KC (2009) Towards a functional neuroanatomy of pleasure and happiness. Trends Cogn Sci 13:479–487.
    • (2009) Trends Cogn Sci , vol.13 , pp. 479-487
    • Kringelbach, M.L.1    Berridge, K.C.2
  • 44
    • 77249137659 scopus 로고    scopus 로고
    • The neuroscience of human intelligence differences
    • Deary IJ, Penke L, Johnson W (2010) The neuroscience of human intelligence differences. Nat Rev Neurosci 11:201–211.
    • (2010) Nat Rev Neurosci , vol.11 , pp. 201-211
    • Deary, I.J.1    Penke, L.2    Johnson, W.3
  • 45
    • 28244433729 scopus 로고    scopus 로고
    • Personality from a controlled processing perspective: An fMRI study of neuroticism, extraversion, and self-consciousness
    • Eisenberger NI, Lieberman MD, Satpute AB (2005) Personality from a controlled processing perspective: An fMRI study of neuroticism, extraversion, and self-consciousness. Cogn Affect Behav Neurosci 5:169–181.
    • (2005) Cogn Affect Behav Neurosci , vol.5 , pp. 169-181
    • Eisenberger, N.I.1    Lieberman, M.D.2    Satpute, A.B.3
  • 46
    • 85022038598 scopus 로고    scopus 로고
    • Discovering dynamic brain networks from big data in rest and task
    • June 29
    • Vidaurre D, et al. (June 29, 2017) Discovering dynamic brain networks from big data in rest and task. Neuroimage, 10.1016/j.neuroimage.2017.06.077.
    • (2017) Neuroimage
    • Vidaurre, D.1
  • 48
    • 0035866052 scopus 로고    scopus 로고
    • Long-range temporal correlations and scaling behavior in human brain oscillations
    • Linkenkaer-Hansen K, Nikouline VV, Palva JM, Ilmoniemi RJ (2001) Long-range temporal correlations and scaling behavior in human brain oscillations. J Neurosci 21:1370–1377.
    • (2001) J Neurosci , vol.21 , pp. 1370-1377
    • Linkenkaer-Hansen, K.1    Nikouline, V.V.2    Palva, J.M.3    Ilmoniemi, R.J.4
  • 49
    • 1842504499 scopus 로고    scopus 로고
    • Constrained linear basis sets for HRF modelling using variational Bayes
    • Woolrich MW, Behrens TEJ, Smith SM (2004) Constrained linear basis sets for HRF modelling using variational Bayes. Neuroimage 21:1748–1761.
    • (2004) Neuroimage , vol.21 , pp. 1748-1761
    • Woolrich, M.W.1    Behrens, T.E.J.2    Smith, S.M.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.