메뉴 건너뛰기




Volumn 180, Issue , 2018, Pages 646-656

Discovering dynamic brain networks from big data in rest and task

Author keywords

[No Author keywords available]

Indexed keywords

ADULT; AGED; BIOBANK; BRAIN DISEASE; BRAIN ELECTROPHYSIOLOGY; BRAIN FUNCTION; BRAIN REGION; CONTROLLED STUDY; DATA BASE; DYNAMICS; FEMALE; FUNCTIONAL MAGNETIC RESONANCE IMAGING; HIDDEN MARKOV MODEL; HUMAN; HUMAN EXPERIMENT; MAGNETOENCEPHALOGRAPHY; MALE; MATHEMATICAL COMPUTING; MENTAL TASK; NORMAL HUMAN; PRIORITY JOURNAL; RESTING STATE NETWORK; REVIEW; UNITED KINGDOM; BRAIN; BRAIN MAPPING; MARKOV CHAIN; NERVE CELL NETWORK; NERVE TRACT; PHYSIOLOGY; PROCEDURES; REST;

EID: 85022038598     PISSN: 10538119     EISSN: 10959572     Source Type: Journal    
DOI: 10.1016/j.neuroimage.2017.06.077     Document Type: Review
Times cited : (215)

References (27)
  • 4
    • 0000353178 scopus 로고
    • A maximization technique occurring in the statistical analysis of probabilistic functions of Markov chains
    • Baum, E., Petrie, T., Soules, G., Weiss, N., A maximization technique occurring in the statistical analysis of probabilistic functions of Markov chains. Ann. Math. Stat. 41:1 (1970), 164–171.
    • (1970) Ann. Math. Stat. , vol.41 , Issue.1 , pp. 164-171
    • Baum, E.1    Petrie, T.2    Soules, G.3    Weiss, N.4
  • 5
    • 1342324773 scopus 로고    scopus 로고
    • Probabilistic independent component analysis for functional magnetic resonance imaging
    • Beckmann, C.F., Smith, S.M., Probabilistic independent component analysis for functional magnetic resonance imaging. IEEE Trans. Med. Imaging 23 (2004), 137–152.
    • (2004) IEEE Trans. Med. Imaging , vol.23 , pp. 137-152
    • Beckmann, C.F.1    Smith, S.M.2
  • 6
    • 75749140786 scopus 로고    scopus 로고
    • Group comparison of resting-state fMRI data using multi-subject ICA and dual regression
    • Beckmann, C.F., Mackay, C.E., Filippini, N., Smith, S.M., Group comparison of resting-state fMRI data using multi-subject ICA and dual regression. Neuroimage, 47(Suppl. 1), 2009, S148.
    • (2009) Neuroimage , vol.47 , pp. S148
    • Beckmann, C.F.1    Mackay, C.E.2    Filippini, N.3    Smith, S.M.4
  • 7
    • 77952881705 scopus 로고    scopus 로고
    • Large-scale brain networks in cognition: emerging methods and principles
    • Bressler, S.L., Menon, V., Large-scale brain networks in cognition: emerging methods and principles. Trends Cognitive Sci. 14 (2010), 277–290.
    • (2010) Trends Cognitive Sci. , vol.14 , pp. 277-290
    • Bressler, S.L.1    Menon, V.2
  • 8
    • 3042523540 scopus 로고    scopus 로고
    • Neuronal oscillations in cortical networks
    • Buzsáki, G., Draguhn, A., Neuronal oscillations in cortical networks. Science 304 (2004), 1926–1929.
    • (2004) Science , vol.304 , pp. 1926-1929
    • Buzsáki, G.1    Draguhn, A.2
  • 10
    • 0003684449 scopus 로고    scopus 로고
    • The Elements of Statistical Learning
    • Springer Verlag
    • Hastie, T., Friedman, J.H., Tibshirani, R., The Elements of Statistical Learning. 2003, Springer Verlag.
    • (2003)
    • Hastie, T.1    Friedman, J.H.2    Tibshirani, R.3
  • 17
    • 0002223982 scopus 로고
    • Algorithms for the assignment and transportation problems
    • Munkres, J., Algorithms for the assignment and transportation problems. J. Soc. Ind. Appl. Math. 5:1 (1957), 32–38.
    • (1957) J. Soc. Ind. Appl. Math. , vol.5 , Issue.1 , pp. 32-38
    • Munkres, J.1
  • 18
    • 0024610919 scopus 로고
    • A tutorial on hidden Markov models and selected applications in speech recognition
    • Rabiner, L.R., A tutorial on hidden Markov models and selected applications in speech recognition. Proc. IEEE 77 (1989), 257–286.
    • (1989) Proc. IEEE , vol.77 , pp. 257-286
    • Rabiner, L.R.1
  • 19
    • 0000016172 scopus 로고
    • A stochastic approximation method
    • Robbins, H., Monro, S., A stochastic approximation method. Ann. Math. Stat. 22:3 (1951), 400–407.
    • (1951) Ann. Math. Stat. , vol.22 , Issue.3 , pp. 400-407
    • Robbins, H.1    Monro, S.2
  • 24
    • 85052896595 scopus 로고    scopus 로고
    • M.W. Woolrich. Brain Network Dynamics Are Hierarchically Organised in Time. In Submission.
    • D. Vidaurre, S.M. Smith & M.W. Woolrich. Brain Network Dynamics Are Hierarchically Organised in Time. In Submission.
    • Vidaurre, D.1    Smith, S.M.2
  • 25
    • 65749118363 scopus 로고    scopus 로고
    • Graphical models, exponential families and variational inference
    • Wainwright, M.J., Jordan, M.I., Graphical models, exponential families and variational inference. Found. Trends Mach. Learn. 1 (2008), 1–305.
    • (2008) Found. Trends Mach. Learn. , vol.1 , pp. 1-305
    • Wainwright, M.J.1    Jordan, M.I.2
  • 26
    • 69549116257 scopus 로고    scopus 로고
    • From EEG signals to brain connectivity: a model-based evaluation of interdependence measures
    • Wendling, F., Ansari-Asi, K., Bartolomei, F., Senhadji, L., From EEG signals to brain connectivity: a model-based evaluation of interdependence measures. J. Neurosci. Methods 183 (2009), 9–18.
    • (2009) J. Neurosci. Methods , vol.183 , pp. 9-18
    • Wendling, F.1    Ansari-Asi, K.2    Bartolomei, F.3    Senhadji, L.4
  • 27
    • 79960280623 scopus 로고    scopus 로고
    • MEG beamforming using Bayesian PCA for adaptive data covariance matrix regularization
    • Woolrich, M., Hunt, L., Groves, A., Barnes, G., MEG beamforming using Bayesian PCA for adaptive data covariance matrix regularization. NeuroImage 57 (2011), 1466–1479.
    • (2011) NeuroImage , vol.57 , pp. 1466-1479
    • Woolrich, M.1    Hunt, L.2    Groves, A.3    Barnes, G.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.