메뉴 건너뛰기




Volumn 25, Issue 12, 2013, Pages 3318-3339

Bayesian sparse partial least squares

Author keywords

[No Author keywords available]

Indexed keywords

ALGORITHM; ANIMAL; BAYES THEOREM; BRAIN; ELECTROENCEPHALOGRAPHY; HAPLORHINI; LETTER; MOVEMENT (PHYSIOLOGY); PHYSIOLOGY; REGRESSION ANALYSIS; SIGNAL PROCESSING;

EID: 84887564612     PISSN: 08997667     EISSN: 1530888X     Source Type: Journal    
DOI: 10.1162/NECO_a_00524     Document Type: Letter
Times cited : (20)

References (29)
  • 1
    • 27844439373 scopus 로고    scopus 로고
    • A framework for learning predictive structures from multiple tasks and unlabeled data
    • Ando, R., & Zhang, T. (2005). A framework for learning predictive structures from multiple tasks and unlabeled data. Journal of Machine Learning Research, 6, 1817-1853.
    • (2005) Journal of Machine Learning Research , vol.6 , pp. 1817-1853
    • Ando, R.1    Zhang, T.2
  • 2
    • 84864063089 scopus 로고    scopus 로고
    • Multi-task feature learning
    • In B. Schölkopf, B. Platt, & T.Hoffmann (Eds.), Advances in neural information processing systems, 19, Cambridge, MA: MIT Press
    • Argyriou, A., Evgeniou, T., & Pontil, M. (2006). Multi-task feature learning. In B. Schölkopf, B. Platt, & T.Hoffmann (Eds.), Advances in neural information processing systems, 19 (pp. 41-48). Cambridge, MA: MIT Press.
    • (2006) , pp. 41-48
    • Argyriou, A.1    Evgeniou, T.2    Pontil, M.3
  • 3
    • 0037350844 scopus 로고    scopus 로고
    • Partial least squares for discrimination
    • Barker, M., & Rayens, W. (2003). Partial least squares for discrimination. Journal of Chemometrics, 17, 166-173.
    • (2003) Journal of Chemometrics , vol.17 , pp. 166-173
    • Barker, M.1    Rayens, W.2
  • 4
    • 3543081155 scopus 로고    scopus 로고
    • Variational algorithms for approximate Bayesian inference
    • Unpublished doctoral dissertation, University College London
    • Beal,M. J. (2003). Variational algorithms for approximate Bayesian inference. Unpublished doctoral dissertation, University College London.
    • (2003)
    • Beal, M.J.1
  • 5
    • 84887552474 scopus 로고    scopus 로고
    • Bayesian principal components
    • In M. S. Keams, S. Sola, & D. A Cohn (Eds.), Advances in neural information processing systems, 11. Cambridge,MA: MIT Press
    • Bishop, C. (1998). Bayesian principal components. In M. S. Keams, S. Sola, & D. A Cohn (Eds.), Advances in neural information processing systems, 11. Cambridge,MA: MIT Press.
    • (1998)
    • Bishop, C.1
  • 6
    • 0002799895 scopus 로고
    • Adaptive multivariate ridge regression
    • Brown, P. J., & Zidek, J. V. (1980). Adaptive multivariate ridge regression. Annals of Statistics, 8, 64-74.
    • (1980) Annals of Statistics , vol.8 , pp. 64-74
    • Brown, P.J.1    Zidek, J.V.2
  • 7
    • 74049093630 scopus 로고    scopus 로고
    • Sparse partial least squares regression for simultaneous dimension reduction and variable selection
    • Chun, H., & Keleş, S. (2010). Sparse partial least squares regression for simultaneous dimension reduction and variable selection. Journal of the Royal Statistical Society: Series B, 72, 3-25.
    • (2010) Journal of the Royal Statistical Society: Series B , vol.72 , pp. 3-25
    • Chun, H.1    Keleş, S.2
  • 8
    • 0027530250 scopus 로고
    • SIMPLS: An alternative approach to partial least squares regression
    • de Jong, S. (1993). SIMPLS: An alternative approach to partial least squares regression. Chemometrics and Intelligent Laboratory Systems, 18, 251-263.
    • (1993) Chemometrics and Intelligent Laboratory Systems , vol.18 , pp. 251-263
    • De Jong, S.1
  • 9
    • 84952149204 scopus 로고
    • A statistical view of some chemometrics regression tools
    • Frank, I. E., & Friedman, J. H. (1993). A statistical view of some chemometrics regression tools. Technometrics, 35, 109-135.
    • (1993) Technometrics , vol.35 , pp. 109-135
    • Frank, I.E.1    Friedman, J.H.2
  • 10
    • 85161974962 scopus 로고    scopus 로고
    • Estimating image bases for visual image reconstruction from human brain activity
    • In Y. Bengio, P. Schuurmans, J. Lafferty, C.Williams,& A. Culotta (Eds.), Advances in neural information processing systems, 22. Cambridge, MA: MIT Press
    • Fujiwara, Y., Miyawaki, Y., & Kamitani, Y. (2009). Estimating image bases for visual image reconstruction from human brain activity. In Y. Bengio, P. Schuurmans, J. Lafferty, C.Williams,& A. Culotta (Eds.), Advances in neural information processing systems, 22. Cambridge, MA: MIT Press.
    • (2009)
    • Fujiwara, Y.1    Miyawaki, Y.2    Kamitani, Y.3
  • 11
    • 84898934543 scopus 로고    scopus 로고
    • Variational inference for Bayesian mixtures of factor analysers
    • In S. A. Solla, T. K. Leen,&K.-R.Müller (Eds.), Advances in neural information processing systems, 12. Cambridge, MA: MIT Press
    • Ghahramani, Z., & Beal, M. J. (2000). Variational inference for Bayesian mixtures of factor analysers. In S. A. Solla, T. K. Leen,&K.-R.Müller (Eds.), Advances in neural information processing systems, 12. Cambridge, MA: MIT Press.
    • (2000)
    • Ghahramani, Z.1    Beal, M.J.2
  • 12
    • 0030501201 scopus 로고    scopus 로고
    • Partial least squares yields shrinkage estimators
    • Goutis,C. (1996). Partial least squares yields shrinkage estimators. Annals of Statistics, 24, 816-824.
    • (1996) Annals of Statistics , vol.24 , pp. 816-824
    • Goutis, C.1
  • 13
    • 10044285992 scopus 로고    scopus 로고
    • Canonical correlation analysis: An overview with application to learning methods
    • Hardoon, D. R., Szedmak, S., & Shawe-Taylor, J. (2004). Canonical correlation analysis: An overview with application to learning methods. Neural Computation, 16, 2639-2664.
    • (2004) Neural Computation , vol.16 , pp. 2639-2664
    • Hardoon, D.R.1    Szedmak, S.2    Shawe-Taylor, J.3
  • 14
    • 0003684449 scopus 로고    scopus 로고
    • The elements of statistical learning: Data mining, inference, and predictions
    • (2nd ed.). New York: Springer
    • Hastie, T., Tibshirani, R., & Friedman, J. (2008). The elements of statistical learning: Data mining, inference, and predictions (2nd ed.). New York: Springer.
    • (2008)
    • Hastie, T.1    Tibshirani, R.2    Friedman, J.3
  • 15
    • 0016511949 scopus 로고
    • Reduced-rank regression for the multivariate linearmodel
    • Izenman, A. (1975). Reduced-rank regression for the multivariate linearmodel. Journal of Multivariate Analysis, 5, 248-264.
    • (1975) Journal of Multivariate Analysis , vol.5 , pp. 248-264
    • Izenman, A.1
  • 16
    • 0010252201 scopus 로고    scopus 로고
    • Tutorial on variational approximation methods
    • In M. Opper & D. Saad (Eds.), Advanced mean field methods: Theory and practice. Cambridge, MA: MIT Press
    • Jaakkola, T. S. (2001). Tutorial on variational approximation methods. In M. Opper & D. Saad (Eds.), Advanced mean field methods: Theory and practice. Cambridge, MA: MIT Press.
    • (2001)
    • Jaakkola, T.S.1
  • 18
    • 80053452697 scopus 로고    scopus 로고
    • On Bayesian PCA: Automatic dimensionality selection and analytic solution
    • In 37th International Conference on Machine Learning. International Machine Learning Society
    • Nakajima, S., Sugiyama, M., & Babacan, D. (2011). On Bayesian PCA: Automatic dimensionality selection and analytic solution. In 37th International Conference on Machine Learning. International Machine Learning Society.
    • (2011)
    • Nakajima, S.1    Sugiyama, M.2    Babacan, D.3
  • 19
    • 79551607002 scopus 로고    scopus 로고
    • Support union recovery in high-dimensional multivariate regression
    • Obozinski, G., Wainwright, M. J., & Jordan, M. I. (2011). Support union recovery in high-dimensional multivariate regression. Annals of Statistics, 39, 1-47.
    • (2011) Annals of Statistics , vol.39 , pp. 1-47
    • Obozinski, G.1    Wainwright, M.J.2    Jordan, M.I.3
  • 20
    • 33745819990 scopus 로고    scopus 로고
    • Overview and recent advances in partial least squares
    • Rosipal, R., & Krämer, N. (2006). Overview and recent advances in partial least squares. Lecture Notes in Computer Science, 3940, 34-51.
    • (2006) Lecture Notes in Computer Science , vol.3940 , pp. 34-51
    • Rosipal, R.1    Krämer, N.2
  • 21
    • 0038259120 scopus 로고    scopus 로고
    • Kernel partial least squares regression in reproducing kernel Hilbert space
    • Rosipal, R.,&Trejo, L. J. (2001). Kernel partial least squares regression in reproducing kernel Hilbert space. Journal of Machine Learning Research, 2, 97-123.
    • (2001) Journal of Machine Learning Research , vol.2 , pp. 97-123
    • Rosipal, R.1    Trejo, L.J.2
  • 23
    • 84859134532 scopus 로고    scopus 로고
    • On the decoding of intracranial data using sparse orthonormalized partial least squares
    • van Gerven, M. A. J., Chao, Z. C., & Heskes, T. (2012). On the decoding of intracranial data using sparse orthonormalized partial least squares. Journal of Neural Engineering, 9, 026017.
    • (2012) Journal of Neural Engineering , vol.9 , pp. 026017
    • Van Gerven, M.A.J.1    Chao, Z.C.2    Heskes, T.3
  • 24
    • 80053436350 scopus 로고    scopus 로고
    • Bayesian CCA via group sparsity
    • In 37th International Conference onMachine Learning. International Machine Learning Society
    • Virtanen, S., Klami, A., & Kaski, S. (2011). Bayesian CCA via group sparsity. In 37th International Conference onMachine Learning. International Machine Learning Society.
    • (2011)
    • Virtanen, S.1    Klami, A.2    Kaski, S.3
  • 25
    • 34248630554 scopus 로고    scopus 로고
    • Variational Bayesian approach to canonical correlation analysis
    • Wang, C. (2007). Variational Bayesian approach to canonical correlation analysis. IEEE Transactions on Neural Networks, 18, 905-910.
    • (2007) IEEE Transactions on Neural Networks , vol.18 , pp. 905-910
    • Wang, C.1
  • 26
    • 85162731973 scopus 로고
    • Amultiblock partial least squares algorithm for investigating complex chemical systems
    • Wangen, L. E.,&Kowalsky, B. R. (1989). Amultiblock partial least squares algorithm for investigating complex chemical systems. Journal of Chemometrics, 3, 3-20.
    • (1989) Journal of Chemometrics , vol.3 , pp. 3-20
    • Wangen, L.E.1    Kowalsky, B.R.2
  • 27
    • 0002307960 scopus 로고
    • Path models with latent variables: The NIPALS approach
    • In H. M. Blalock (Ed.), Quantitative sociology: International perspectives on mathematical and statistical model building, New York: Academic Press
    • Wold, H. (1975). Path models with latent variables: The NIPALS approach. In H. M. Blalock (Ed.), Quantitative sociology: International perspectives on mathematical and statistical model building (pp. 307-357). New York: Academic Press.
    • (1975) , pp. 307-357
    • Wold, H.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.