메뉴 건너뛰기




Volumn 10, Issue 1, 2017, Pages 1238-1249

KEEL 3.0: An Open Source Software for Multi-Stage Analysis in Data Mining

Author keywords

Data Mining; Evolutionary Algorithms; Java; Open Source; Preprocessing

Indexed keywords

EVOLUTIONARY ALGORITHMS; INFORMATION MANAGEMENT; JAVA PROGRAMMING LANGUAGE; LEARNING ALGORITHMS; OPEN SOURCE SOFTWARE; OPEN SYSTEMS; SUPERVISED LEARNING;

EID: 85033708822     PISSN: 18756891     EISSN: 18756883     Source Type: Journal    
DOI: 10.2991/ijcis.10.1.82     Document Type: Article
Times cited : (225)

References (42)
  • 1
    • 85183746840 scopus 로고    scopus 로고
    • KNIME: The konstanz information miner
    • KNIME: The konstanz information miner, 2016. http://www.knime.org
    • (2016)
  • 2
    • 80053653987 scopus 로고    scopus 로고
    • A fuzzy association rule-based classification model for high-dimensional problems with genetic rule selection and lateral tuning
    • J. Alcalá-Fdez, R. Alcalá, and F. Herrera. A fuzzy association rule-based classification model for high-dimensional problems with genetic rule selection and lateral tuning. IEEE Transactions on Fuzzy Systems, 19(5):857–872, 2011.
    • (2011) IEEE Transactions on Fuzzy Systems , vol.19 , Issue.5 , pp. 857-872
    • Alcalá-Fdez, J.1    Alcalá, R.2    Herrera, F.3
  • 3
    • 84962050637 scopus 로고    scopus 로고
    • A survey of fuzzy systems software: Taxonomy, current research trends, and prospects
    • J. Alcalá-Fdez and J. M. Alonso. A survey of fuzzy systems software: Taxonomy, current research trends, and prospects. IEEE Transactions on Fuzzy Systems, 24(1):40–56, 2016.
    • (2016) IEEE Transactions on Fuzzy Systems , vol.24 , Issue.1 , pp. 40-56
    • Alcalá-Fdez, J.1    Alonso, J.M.2
  • 6
    • 84879815802 scopus 로고    scopus 로고
    • Multiple instance classification: Review, taxonomy and comparative study
    • J. Amores. Multiple instance classification: Review, taxonomy and comparative study. Artificial Intelligence, 201:81–105, 2013.
    • (2013) Artificial Intelligence , vol.201 , pp. 81-105
    • Amores, J.1
  • 7
    • 85183778872 scopus 로고    scopus 로고
    • doParallel: Foreach Parallel Adaptor for the ‘parallel’ Package, . R package version 1.0.10
    • Revolution Analytics and Steve Weston. doParallel: Foreach Parallel Adaptor for the ‘parallel’ Package, 2015. R package version 1.0.10.
    • (2015) Revolution Analytics and Steve Weston.
  • 8
    • 85183717649 scopus 로고    scopus 로고
    • . Foreach: Provides Foreach Looping Construct for R
    • R package version 1.4.3
    • Revolution Analytics and Steve Weston. foreach: Provides Foreach Looping Construct for R, 2015. R package version 1.4.3.
    • (2015) Revolution Analytics and Steve Weston
  • 10
    • 84983748443 scopus 로고    scopus 로고
    • A survey of predictive modeling on imbalanced domains
    • August 2016
    • P. Branco, L. Torgo, and R. P. Ribeiro. A survey of predictive modeling on imbalanced domains. ACM Comput. Surv., 49(2):31:1–31:50, August 2016.
    • ACM Comput. Surv , vol.49 , Issue.2 , pp. 1-31
    • Branco, P.1    Torgo, L.2    Ribeiro, R.P.3
  • 11
    • 84894630936 scopus 로고    scopus 로고
    • Overview on evolutionary subgroup discovery: analysis of the suitability and potential of the search performed by evolutionary algorithms
    • C. J. Carmona, P. González, M. J. del Jesus, and F. Herrera. Overview on evolutionary subgroup discovery: analysis of the suitability and potential of the search performed by evolutionary algorithms. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 4(2):87–103, 2014.
    • (2014) Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery , vol.4 , Issue.2 , pp. 87-103
    • Carmona, C.J.1    González, P.2    del Jesus, M.J.3    Herrera, F.4
  • 12
    • 85183777565 scopus 로고    scopus 로고
    • Winston Chang. R6:, , . R package version 2.1.1
    • Winston Chang. R6: Classes with Reference Semantics, 2015. R package version 2.1.1.
    • (2015) Classes with Reference Semantics
  • 14
    • 84979986133 scopus 로고    scopus 로고
    • A mutual information estimator for continuous and discrete variables applied to feature selection and classification problems
    • F. Coelho, A.P. Braga, and M. Verleysen. A mutual information estimator for continuous and discrete variables applied to feature selection and classification problems. International Journal of Computational Intelligence Systems, 9 – 4:726 – 733, 2016.
    • (2016) International Journal of Computational Intelligence Systems , vol.4 , pp. 726-733
    • Coelho, F.1    Braga, A.P.2    Verleysen, M.3
  • 15
    • 29644438050 scopus 로고    scopus 로고
    • Statistical comparisons of classifiers over multiple data sets
    • J. Demšar. Statistical comparisons of classifiers over multiple data sets. Journal of Machine Learning Research, 7:1–30, 2006.
    • (2006) Journal of Machine Learning Research , vol.7 , pp. 1-30
    • Demšar, J.1
  • 16
    • 84891736888 scopus 로고    scopus 로고
    • Fuzzy nearest neighbor algorithms: Taxonomy, experimental analysis and prospects
    • J. Derrac, S. García, and F. Herrera. Fuzzy nearest neighbor algorithms: Taxonomy, experimental analysis and prospects. Information Sciences, 260:98 – 119, 2014.
    • (2014) Information Sciences , vol.260 , pp. 98-119
    • Derrac, J.1    García, S.2    Herrera, F.3
  • 17
    • 84926167492 scopus 로고    scopus 로고
    • Revisiting evolutionary fuzzy systems: Taxonomy, applications, new trends and challenges
    • A. Fernández, V. López, M.J. del Jesus, and F. Herrera. Revisiting evolutionary fuzzy systems: Taxonomy, applications, new trends and challenges. Knowledge-Based Systems, 80:109 – 121, 2015.
    • (2015) Knowledge-Based Systems , vol.80 , pp. 109-121
    • Fernández, A.1    López, V.2    del Jesus, M.J.3    Herrera, F.4
  • 21
    • 58149287952 scopus 로고    scopus 로고
    • An extension on “statistical comparisons of classifiers over multiple data sets” for all pairwise comparisons
    • S. García and F. Herrera. An extension on “statistical comparisons of classifiers over multiple data sets” for all pairwise comparisons. Journal of Machine Learning Research, 9:2677–2694, 2008.
    • (2008) Journal of Machine Learning Research , vol.9 , pp. 2677-2694
    • García, S.1    Herrera, F.2
  • 22
    • 85183726328 scopus 로고    scopus 로고
    • Data Preprocessing in Data Mining, volume 72 of Intelligent Systems Reference Library. Springer
    • S. García, J. Luengo, and F. Herrera. Data Preprocessing in Data Mining, volume 72 of Intelligent Systems Reference Library. Springer, 2015.
    • (2015)
    • García, S.1    Luengo, J.2    Herrera, F.3
  • 23
    • 84956853985 scopus 로고    scopus 로고
    • Tutorial on practical tips of the most influential data preprocessing algorithms in data mining
    • S. García, J. Luengo, and F. Herrera. Tutorial on practical tips of the most influential data preprocessing algorithms in data mining. Knowledge-Based Systems, 98:1 – 29, 2016.
    • (2016) Knowledge-Based Systems , vol.98 , pp. 1-29
    • García, S.1    Luengo, J.2    Herrera, F.3
  • 29
    • 85043605198 scopus 로고    scopus 로고
    • Learning from imbalanced data: open challenges and future directions
    • B. Krawczyk. Learning from imbalanced data: open challenges and future directions. Progress in Artificial Intelligence, 5(4):221–232, 2016.
    • (2016) Progress in Artificial Intelligence , vol.5 , Issue.4 , pp. 221-232
    • Krawczyk, B.1
  • 31
    • 84883447718 scopus 로고    scopus 로고
    • An insight into classification with imbalanced data: Empirical results and current trends on using data intrinsic characteristics
    • V. López, A. Fernández, S. García, V. Palade, and F. Herrera. An insight into classification with imbalanced data: Empirical results and current trends on using data intrinsic characteristics. Information Sciences, 250:113–141, 2013.
    • (2013) Information Sciences , vol.250 , pp. 113-141
    • López, V.1    Fernández, A.2    García, S.3    Palade, V.4    Herrera, F.5
  • 36
    • 85027947262 scopus 로고    scopus 로고
    • SEG-SSC: A framework based on synthetic examples generation for self-labeled semi-supervised classification
    • I. Triguero, S. García, and F. Herrera. SEG-SSC: A framework based on synthetic examples generation for self-labeled semi-supervised classification. IEEE Transactions on Cybernetics, 45(4):622–634, April 2015.
    • (2015) IEEE Transactions on Cybernetics , vol.45 , Issue.4 , pp. 622-634
    • Triguero, I.1    García, S.2    Herrera, F.3
  • 37
    • 84887920186 scopus 로고    scopus 로고
    • Self-labeled techniques for semi-supervised learning: taxonomy, software and empirical study
    • I. Triguero, S. García, and F. Herrera. Self-labeled techniques for semi-supervised learning: taxonomy, software and empirical study. Knowledge and Information Systems, 2(2):245–284, 2015.
    • (2015) Knowledge and Information Systems , vol.2 , Issue.2 , pp. 245-284
    • Triguero, I.1    García, S.2    Herrera, F.3
  • 39
    • 85183740352 scopus 로고    scopus 로고
    • Simon Urbanek. rJava: Low-Level R to Java Interface, 2015. R package version 0.9-7
    • Simon Urbanek. rJava: Low-Level R to Java Interface, 2015. R package version 0.9-7.


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.