-
1
-
-
84976384382
-
Deep learning for remote sensing data: A technical tutorial on the state of the art
-
L. Zhang, L. Zhang, and B. Du, "Deep learning for remote sensing data: a technical tutorial on the state of the art," IEEE Geosci. Remote Sens. Mag. 4(2), 22-40 (2016).
-
(2016)
IEEE Geosci. Remote Sens. Mag.
, vol.4
, Issue.2
, pp. 22-40
-
-
Zhang, L.1
Zhang, L.2
Du, B.3
-
2
-
-
85032862238
-
-
U.S.A.F., (March)
-
U.S.A.F., "MSTAR overview," http://tinyurl.com/pc8nh3s (March 2017).
-
(2017)
MSTAR Overview
-
-
-
3
-
-
84894438418
-
Automatic target classification of manmade objects in synthetic aperture radar images using gabor wavelet and neural network
-
P. Vasuki and S. M. M. Roomi, "Automatic target classification of manmade objects in synthetic aperture radar images using Gabor wavelet and neural network," J. Appl. Remote Sens. 7(1), 073592 (2013).
-
(2013)
J. Appl. Remote Sens.
, vol.7
, Issue.1
, pp. 073592
-
-
Vasuki, P.1
Roomi, S.M.M.2
-
4
-
-
85011411676
-
A simulation-based approach towards automatic target recognition of high resolution space borne radar signatures
-
10004
-
H. Anglberger and T. Kempf, "A simulation-based approach towards automatic target recognition of high resolution space borne radar signatures," Proc. SPIE 10004, 1000413 (2016).
-
(2016)
Proc. SPIE
, pp. 1000413
-
-
Anglberger, H.1
Kempf, T.2
-
5
-
-
84948692347
-
Target classification strategies
-
B. J. Schachter, "Target classification strategies," Proc. SPIE 9476, 947602 (2015).
-
(2015)
Proc. SPIE
, vol.9476
, pp. 947602
-
-
Schachter, B.J.1
-
6
-
-
84994791414
-
Automatic target recognition in synthetic aperture radar imagery: A state-of-the-art review
-
K. El-Darymli et al., "Automatic target recognition in synthetic aperture radar imagery: a state-of-the-art review," IEEE Access 4, 6014-6058 (2016).
-
(2016)
IEEE Access
, vol.4
, pp. 6014-6058
-
-
El-Darymli, K.1
-
7
-
-
84901322878
-
Vehicle detection in satellite images by hybrid deep convolutional neural networks
-
X. Chen et al., "Vehicle detection in satellite images by hybrid deep convolutional neural networks," IEEE Geosci. Remote Sens. Lett. 11(10), 1797-1801 (2014).
-
(2014)
IEEE Geosci. Remote Sens. Lett.
, vol.11
, Issue.10
, pp. 1797-1801
-
-
Chen, X.1
-
8
-
-
85007200918
-
Airport detection from remote sensing images using transferable convolutional neural networks
-
IEEE
-
P. Zhang et al., "Airport detection from remote sensing images using transferable convolutional neural networks," in Int. Joint Conf. on Neural Networks (IJCNN), pp. 2590-2595, IEEE (2016).
-
(2016)
Int. Joint Conf. on Neural Networks (IJCNN)
, pp. 2590-2595
-
-
Zhang, P.1
-
9
-
-
84997770219
-
Region-based convolutional neural networks for object detection in very high resolution remote sensing images
-
IEEE
-
Y. Cao, X. Niu, and Y. Dou, "Region-based convolutional neural networks for object detection in very high resolution remote sensing images," in 12th Int. Conf. on Natural Computation, Fuzzy Systems and Knowledge Discovery (ICNC-FSKD), pp. 548-554, IEEE (2016).
-
(2016)
12th Int. Conf. on Natural Computation, Fuzzy Systems and Knowledge Discovery (ICNC-FSKD)
, pp. 548-554
-
-
Cao, Y.1
Niu, X.2
Dou, Y.3
-
11
-
-
84947868906
-
Multiview deep learning for land-use classification
-
F. P. Luus et al., "Multiview deep learning for land-use classification," IEEE Geosci. Remote Sens. Lett. 12(12), 2448-2452 (2015).
-
(2015)
IEEE Geosci. Remote Sens. Lett.
, vol.12
, Issue.12
, pp. 2448-2452
-
-
Luus, F.P.1
-
12
-
-
85007486834
-
Scene classification of high resolution remote sensing images using convolutional neural networks
-
IEEE
-
G. Cheng et al., "Scene classification of high resolution remote sensing images using convolutional neural networks," in IEEE Int. Geoscience and Remote Sensing Symp. (IGARSS), pp. 767-770, IEEE (2016).
-
(2016)
IEEE Int. Geoscience and Remote Sensing Symp. (IGARSS)
, pp. 767-770
-
-
Cheng, G.1
-
14
-
-
85013301566
-
Training deep convolutional neural networks for land-cover classification of high-resolution imagery
-
G. J. Scott et al., "Training deep convolutional neural networks for land-cover classification of high-resolution imagery," IEEE Geosci. Remote Sens. Lett. 14(4), 549-553 (2017).
-
(2017)
IEEE Geosci. Remote Sens. Lett.
, vol.14
, Issue.4
, pp. 549-553
-
-
Scott, G.J.1
-
15
-
-
84876231242
-
Image net classification with deep convolutional neural networks
-
Curran Associates, Inc.
-
A. Krizhevsky, I. Sutskever, and G. E. Hinton, "Image Net classification with deep convolutional neural networks," in Proc. of the 25th Int. Conf. on Neural Information Processing Systems (NIPS), pp. 1097-1105, Curran Associates, Inc. (2012).
-
(2012)
Proc. of the 25th Int. Conf. on Neural Information Processing Systems (NIPS)
, pp. 1097-1105
-
-
Krizhevsky, A.1
Sutskever, I.2
Hinton, G.E.3
-
16
-
-
85029000635
-
Fusion of deep convolutional neural networks for land cover classification of high-resolution imagery
-
G. J. Scott et al., "Fusion of deep convolutional neural networks for land cover classification of high-resolution imagery," IEEE Geosci. Remote Sens. Lett. 14, 1638-1642 (2017).
-
(2017)
IEEE Geosci. Remote Sens. Lett.
, vol.14
, pp. 1638-1642
-
-
Scott, G.J.1
-
17
-
-
85032869262
-
-
(March)
-
Digital Globe, "Digital Globe maps API," https://platform.digitalglobe.com/maps-api/ (March 2017).
-
(2017)
Digital Globe Maps API
-
-
-
18
-
-
85032880091
-
-
(March)
-
Digital Globe Foundation, "Digital Globe Foundation homepage," http://www.digitalglobefoundation.org/ (March 2017).
-
(2017)
Digital Globe Foundation Homepage
-
-
-
20
-
-
84913580146
-
Caffe: Convolutional architecture for fast feature embedding
-
ACM
-
Y. Jia et al., "Caffe: convolutional architecture for fast feature embedding," in Proc. of the 22nd ACM Int. Conf. on Multimedia, ACM, 675-678 (2014).
-
(2014)
Proc. of the 22nd ACM Int. Conf. on Multimedia
, pp. 675-678
-
-
Jia, Y.1
-
23
-
-
55749094880
-
Brain activity-based image classification from rapid serial visual presentation
-
N. Bigdely-Shamlo et al., "Brain activity-based image classification from rapid serial visual presentation," IEEE Trans. Neural Syst. Rehabil. Eng. 16(5), 432-441 (2008).
-
(2008)
IEEE Trans. Neural Syst. Rehabil. Eng.
, vol.16
, Issue.5
, pp. 432-441
-
-
Bigdely-Shamlo, N.1
-
24
-
-
33947629196
-
GeoIRIS: Geospatial information retrieval and indexing system-content mining, semantics modeling, and complex queries
-
C.-R. Shyu et al., "GeoIRIS: geospatial information retrieval and indexing system-content mining, semantics modeling, and complex queries," IEEE Trans. Geosci. Remote Sens. 45(4), 839-852 (2007).
-
(2007)
IEEE Trans. Geosci. Remote Sens.
, vol.45
, Issue.4
, pp. 839-852
-
-
Shyu, C.-R.1
-
25
-
-
84875647240
-
GeoCDX: An automated change detection and exploitation system for high-resolution satellite imagery
-
M. N. Klaric et al., "GeoCDX: an automated change detection and exploitation system for high-resolution satellite imagery," IEEE Trans. Geosci. Remote Sens. 51(4), 2067-2086 (2013).
-
(2013)
IEEE Trans. Geosci. Remote Sens.
, vol.51
, Issue.4
, pp. 2067-2086
-
-
Klaric, M.N.1
-
26
-
-
82155181621
-
Clustering of detected changes in high-resolution satellite imagery using a stabilized competitive agglomeration algorithm
-
O. Sjahputera et al., "Clustering of detected changes in high-resolution satellite imagery using a stabilized competitive agglomeration algorithm," IEEE Trans. Geosci. Remote Sens. 49(12), 4687-4703 (2011).
-
(2011)
IEEE Trans. Geosci. Remote Sens.
, vol.49
, Issue.12
, pp. 4687-4703
-
-
Sjahputera, O.1
-
27
-
-
84988568608
-
Dimensionality reduction for visual data mining of earth observation archives
-
A. Griparis, D. Faur, and M. Datcu, "Dimensionality reduction for visual data mining of earth observation archives," IEEE Geosci. Remote Sens. Lett. 13, 1701-1705 (2016).
-
(2016)
IEEE Geosci. Remote Sens. Lett.
, vol.13
, pp. 1701-1705
-
-
Griparis, A.1
Faur, D.2
Datcu, M.3
-
28
-
-
84966560066
-
Semantics-enabled framework for spatial image information mining of linked earth observation data
-
K. R. Kurte et al., "Semantics-enabled framework for spatial image information mining of linked earth observation data," IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 10, 29-44 (2017).
-
(2017)
IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
, vol.10
, pp. 29-44
-
-
Kurte, K.R.1
|