메뉴 건너뛰기




Volumn 11, Issue 4, 2017, Pages

Rapid broad area search and detection of Chinese surface-to-air missile sites using deep convolutional neural networks

Author keywords

convolutional neural networks; deep learning; object detection; target recognition

Indexed keywords

CLUSTERING ALGORITHMS; CONVOLUTION; DEEP LEARNING; DEEP NEURAL NETWORKS; NEURAL NETWORKS; OBJECT DETECTION;

EID: 85032867785     PISSN: None     EISSN: 19313195     Source Type: Journal    
DOI: 10.1117/1.JRS.11.042614     Document Type: Article
Times cited : (39)

References (29)
  • 1
    • 84976384382 scopus 로고    scopus 로고
    • Deep learning for remote sensing data: A technical tutorial on the state of the art
    • L. Zhang, L. Zhang, and B. Du, "Deep learning for remote sensing data: a technical tutorial on the state of the art," IEEE Geosci. Remote Sens. Mag. 4(2), 22-40 (2016).
    • (2016) IEEE Geosci. Remote Sens. Mag. , vol.4 , Issue.2 , pp. 22-40
    • Zhang, L.1    Zhang, L.2    Du, B.3
  • 2
    • 85032862238 scopus 로고    scopus 로고
    • U.S.A.F., (March)
    • U.S.A.F., "MSTAR overview," http://tinyurl.com/pc8nh3s (March 2017).
    • (2017) MSTAR Overview
  • 3
    • 84894438418 scopus 로고    scopus 로고
    • Automatic target classification of manmade objects in synthetic aperture radar images using gabor wavelet and neural network
    • P. Vasuki and S. M. M. Roomi, "Automatic target classification of manmade objects in synthetic aperture radar images using Gabor wavelet and neural network," J. Appl. Remote Sens. 7(1), 073592 (2013).
    • (2013) J. Appl. Remote Sens. , vol.7 , Issue.1 , pp. 073592
    • Vasuki, P.1    Roomi, S.M.M.2
  • 4
    • 85011411676 scopus 로고    scopus 로고
    • A simulation-based approach towards automatic target recognition of high resolution space borne radar signatures
    • 10004
    • H. Anglberger and T. Kempf, "A simulation-based approach towards automatic target recognition of high resolution space borne radar signatures," Proc. SPIE 10004, 1000413 (2016).
    • (2016) Proc. SPIE , pp. 1000413
    • Anglberger, H.1    Kempf, T.2
  • 5
    • 84948692347 scopus 로고    scopus 로고
    • Target classification strategies
    • B. J. Schachter, "Target classification strategies," Proc. SPIE 9476, 947602 (2015).
    • (2015) Proc. SPIE , vol.9476 , pp. 947602
    • Schachter, B.J.1
  • 6
    • 84994791414 scopus 로고    scopus 로고
    • Automatic target recognition in synthetic aperture radar imagery: A state-of-the-art review
    • K. El-Darymli et al., "Automatic target recognition in synthetic aperture radar imagery: a state-of-the-art review," IEEE Access 4, 6014-6058 (2016).
    • (2016) IEEE Access , vol.4 , pp. 6014-6058
    • El-Darymli, K.1
  • 7
    • 84901322878 scopus 로고    scopus 로고
    • Vehicle detection in satellite images by hybrid deep convolutional neural networks
    • X. Chen et al., "Vehicle detection in satellite images by hybrid deep convolutional neural networks," IEEE Geosci. Remote Sens. Lett. 11(10), 1797-1801 (2014).
    • (2014) IEEE Geosci. Remote Sens. Lett. , vol.11 , Issue.10 , pp. 1797-1801
    • Chen, X.1
  • 8
    • 85007200918 scopus 로고    scopus 로고
    • Airport detection from remote sensing images using transferable convolutional neural networks
    • IEEE
    • P. Zhang et al., "Airport detection from remote sensing images using transferable convolutional neural networks," in Int. Joint Conf. on Neural Networks (IJCNN), pp. 2590-2595, IEEE (2016).
    • (2016) Int. Joint Conf. on Neural Networks (IJCNN) , pp. 2590-2595
    • Zhang, P.1
  • 11
    • 84947868906 scopus 로고    scopus 로고
    • Multiview deep learning for land-use classification
    • F. P. Luus et al., "Multiview deep learning for land-use classification," IEEE Geosci. Remote Sens. Lett. 12(12), 2448-2452 (2015).
    • (2015) IEEE Geosci. Remote Sens. Lett. , vol.12 , Issue.12 , pp. 2448-2452
    • Luus, F.P.1
  • 12
    • 85007486834 scopus 로고    scopus 로고
    • Scene classification of high resolution remote sensing images using convolutional neural networks
    • IEEE
    • G. Cheng et al., "Scene classification of high resolution remote sensing images using convolutional neural networks," in IEEE Int. Geoscience and Remote Sensing Symp. (IGARSS), pp. 767-770, IEEE (2016).
    • (2016) IEEE Int. Geoscience and Remote Sensing Symp. (IGARSS) , pp. 767-770
    • Cheng, G.1
  • 14
    • 85013301566 scopus 로고    scopus 로고
    • Training deep convolutional neural networks for land-cover classification of high-resolution imagery
    • G. J. Scott et al., "Training deep convolutional neural networks for land-cover classification of high-resolution imagery," IEEE Geosci. Remote Sens. Lett. 14(4), 549-553 (2017).
    • (2017) IEEE Geosci. Remote Sens. Lett. , vol.14 , Issue.4 , pp. 549-553
    • Scott, G.J.1
  • 16
    • 85029000635 scopus 로고    scopus 로고
    • Fusion of deep convolutional neural networks for land cover classification of high-resolution imagery
    • G. J. Scott et al., "Fusion of deep convolutional neural networks for land cover classification of high-resolution imagery," IEEE Geosci. Remote Sens. Lett. 14, 1638-1642 (2017).
    • (2017) IEEE Geosci. Remote Sens. Lett. , vol.14 , pp. 1638-1642
    • Scott, G.J.1
  • 17
    • 85032869262 scopus 로고    scopus 로고
    • (March)
    • Digital Globe, "Digital Globe maps API," https://platform.digitalglobe.com/maps-api/ (March 2017).
    • (2017) Digital Globe Maps API
  • 18
    • 85032880091 scopus 로고    scopus 로고
    • (March)
    • Digital Globe Foundation, "Digital Globe Foundation homepage," http://www.digitalglobefoundation.org/ (March 2017).
    • (2017) Digital Globe Foundation Homepage
  • 20
    • 84913580146 scopus 로고    scopus 로고
    • Caffe: Convolutional architecture for fast feature embedding
    • ACM
    • Y. Jia et al., "Caffe: convolutional architecture for fast feature embedding," in Proc. of the 22nd ACM Int. Conf. on Multimedia, ACM, 675-678 (2014).
    • (2014) Proc. of the 22nd ACM Int. Conf. on Multimedia , pp. 675-678
    • Jia, Y.1
  • 23
    • 55749094880 scopus 로고    scopus 로고
    • Brain activity-based image classification from rapid serial visual presentation
    • N. Bigdely-Shamlo et al., "Brain activity-based image classification from rapid serial visual presentation," IEEE Trans. Neural Syst. Rehabil. Eng. 16(5), 432-441 (2008).
    • (2008) IEEE Trans. Neural Syst. Rehabil. Eng. , vol.16 , Issue.5 , pp. 432-441
    • Bigdely-Shamlo, N.1
  • 24
    • 33947629196 scopus 로고    scopus 로고
    • GeoIRIS: Geospatial information retrieval and indexing system-content mining, semantics modeling, and complex queries
    • C.-R. Shyu et al., "GeoIRIS: geospatial information retrieval and indexing system-content mining, semantics modeling, and complex queries," IEEE Trans. Geosci. Remote Sens. 45(4), 839-852 (2007).
    • (2007) IEEE Trans. Geosci. Remote Sens. , vol.45 , Issue.4 , pp. 839-852
    • Shyu, C.-R.1
  • 25
    • 84875647240 scopus 로고    scopus 로고
    • GeoCDX: An automated change detection and exploitation system for high-resolution satellite imagery
    • M. N. Klaric et al., "GeoCDX: an automated change detection and exploitation system for high-resolution satellite imagery," IEEE Trans. Geosci. Remote Sens. 51(4), 2067-2086 (2013).
    • (2013) IEEE Trans. Geosci. Remote Sens. , vol.51 , Issue.4 , pp. 2067-2086
    • Klaric, M.N.1
  • 26
    • 82155181621 scopus 로고    scopus 로고
    • Clustering of detected changes in high-resolution satellite imagery using a stabilized competitive agglomeration algorithm
    • O. Sjahputera et al., "Clustering of detected changes in high-resolution satellite imagery using a stabilized competitive agglomeration algorithm," IEEE Trans. Geosci. Remote Sens. 49(12), 4687-4703 (2011).
    • (2011) IEEE Trans. Geosci. Remote Sens. , vol.49 , Issue.12 , pp. 4687-4703
    • Sjahputera, O.1
  • 27
    • 84988568608 scopus 로고    scopus 로고
    • Dimensionality reduction for visual data mining of earth observation archives
    • A. Griparis, D. Faur, and M. Datcu, "Dimensionality reduction for visual data mining of earth observation archives," IEEE Geosci. Remote Sens. Lett. 13, 1701-1705 (2016).
    • (2016) IEEE Geosci. Remote Sens. Lett. , vol.13 , pp. 1701-1705
    • Griparis, A.1    Faur, D.2    Datcu, M.3
  • 28
    • 84966560066 scopus 로고    scopus 로고
    • Semantics-enabled framework for spatial image information mining of linked earth observation data
    • K. R. Kurte et al., "Semantics-enabled framework for spatial image information mining of linked earth observation data," IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 10, 29-44 (2017).
    • (2017) IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. , vol.10 , pp. 29-44
    • Kurte, K.R.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.