-
1
-
-
84891548125
-
Rethinking IP core networks
-
Dec.
-
S. Das, G. Parulkar, and N. McKeown, "Rethinking IP core networks," IEEE/OSA J. Opt. Commun. Netw., vol. 5, no. 12, pp. 1431-1442, Dec. 2013.
-
(2013)
IEEE/OSA J. Opt. Commun. Netw.
, vol.5
, Issue.12
, pp. 1431-1442
-
-
Das, S.1
Parulkar, G.2
McKeown, N.3
-
2
-
-
84946925293
-
Joint optimization of rule placement and traffic engineering for QoS provisioning in software defined network
-
Dec.
-
H. Huang, S. Guo, P. Li, B. Ye, and I. Stojmenovic, "Joint optimization of rule placement and traffic engineering for QoS provisioning in software defined network," IEEE Trans. Comput., vol. 64, no. 12, pp. 3488-3499, Dec. 2015.
-
(2015)
IEEE Trans. Comput.
, vol.64
, Issue.12
, pp. 3488-3499
-
-
Huang, H.1
Guo, S.2
Li, P.3
Ye, B.4
Stojmenovic, I.5
-
3
-
-
79956014740
-
PacketShader: A GPUaccelerated software router
-
S. Han, K. Jang, K. Park, and S. Moon,"PacketShader: A GPUaccelerated software router," ACM SIGCOMM Comput. Commun. Rev., vol. 40, no. 4, pp. 195-206, 2010.
-
(2010)
ACM SIGCOMM Comput. Commun. Rev.
, vol.40
, Issue.4
, pp. 195-206
-
-
Han, S.1
Jang, K.2
Park, K.3
Moon, S.4
-
5
-
-
85077437936
-
GASPP: A GPU-accelerated stateful packet processing framework
-
Philadelphia, PA, USA
-
G. Vasilidadis, L. Koromilas, M. Polychronakis, and S. Ioannidis, "GASPP: A GPU-accelerated stateful packet processing framework," in Proc. USENIX Annu. Tech. Conf., Philadelphia, PA, USA, 2014, pp. 321-332.
-
(2014)
Proc. USENIX Annu. Tech. Conf.
, pp. 321-332
-
-
Vasilidadis, G.1
Koromilas, L.2
Polychronakis, M.3
Ioannidis, S.4
-
6
-
-
85016003335
-
-
Technical Report. Comput. Sci. Dept., Carnegie Mellon Univ., Pittsburgh, PA, USA
-
M. Mukerjee, D. Naylor, and B. Vavala, "Packet processing on the GPU," Technical Report. Comput. Sci. Dept., Carnegie Mellon Univ., Pittsburgh, PA, USA.
-
Packet Processing on the GPU
-
-
Mukerjee, M.1
Naylor, D.2
Vavala, B.3
-
7
-
-
77955202237
-
Building a single-box 100 Gbps software router
-
S. Han, K. Jang, K. Park, and S. Moon, "Building a single-box 100 Gbps software router," in Proc. 17th IEEE Workshop Local Metropolitan Area Netw., 2010, pp. 1-4.
-
(2010)
Proc. 17th IEEE Workshop Local Metropolitan Area Netw.
, pp. 1-4
-
-
Han, S.1
Jang, K.2
Park, K.3
Moon, S.4
-
8
-
-
77953115951
-
IP routing processing with graphic processors
-
S. Mu, X. Zhang, N. Zhang, J. Lu, Y. S. Deng, and S. Zhang, "IP routing processing with graphic processors," in Proc. Conf. Des. Autom. Test Europe, 2010, pp. 93-98.
-
(2010)
Proc. Conf. Des. Autom. Test Europe
, pp. 93-98
-
-
Mu, S.1
Zhang, X.2
Zhang, N.3
Lu, J.4
Deng, Y.S.5
Zhang, S.6
-
9
-
-
84890864125
-
-
Cisco, Jun.
-
Cisco, "The Zettabyte Era Trends and analysis," Jun. 2016. [Online]. Available: www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/vnihyperconnectivity-wp.html
-
(2016)
The Zettabyte Era Trends and Analysis
-
-
-
10
-
-
84922172165
-
Bidirectional multiconstrained routing algorithms
-
Sep.
-
B. Zhang, J. Hao, and H. T. Mouftah, "Bidirectional multiconstrained routing algorithms," IEEE Trans. Comput., vol. 63, no. 9, pp. 2174-2186, Sep. 2014.
-
(2014)
IEEE Trans. Comput.
, vol.63
, Issue.9
, pp. 2174-2186
-
-
Zhang, B.1
Hao, J.2
Mouftah, H.T.3
-
11
-
-
84930630277
-
Deep learning
-
Y. LeCun, Y. Bengio, and G. Hinton, "Deep learning," Nature, vol. 521, no. 7553, pp. 436-444, 2015.
-
(2015)
Nature
, vol.521
, Issue.7553
, pp. 436-444
-
-
LeCun, Y.1
Bengio, Y.2
Hinton, G.3
-
12
-
-
0033099691
-
A handwritten character recognition system using directional element feature and asymmetric Mahalanobis distance
-
Mar
-
N. Kato, M. Suzuki, S. Omachi, H. Aso, and Y. Nemoto, "A handwritten character recognition system using directional element feature and asymmetric Mahalanobis distance," IEEE Trans. Pattern Anal. Mach. Intell., vol. 21, no. 3, pp. 258-262, Mar. 1999.
-
(1999)
IEEE Trans. Pattern Anal. Mach. Intell.
, vol.21
, Issue.3
, pp. 258-262
-
-
Kato, N.1
Suzuki, M.2
Omachi, S.3
Aso, H.4
Nemoto, Y.5
-
13
-
-
0025622097
-
Neural network-based routing in an intelligent computer communication network
-
Y. C. Ouyang and A. A. Bhatti, "Neural network-based routing in an intelligent computer communication network," in Proc. IEEE 22nd Southeastern Symp. Syst. Theory, 1990, pp. 444-448.
-
(1990)
Proc. IEEE 22nd Southeastern Symp. Syst. Theory
, pp. 444-448
-
-
Ouyang, Y.C.1
Bhatti, A.A.2
-
15
-
-
84875334372
-
Congestion control based on distributed statistical QoS-aware routing management
-
M. Barabas, G. Boanea, R. A. Bogdan, and V. Dobrota, "Congestion control based on distributed statistical QoS-aware routing management," Przeglad Elektrotechniczny, vol. 89, no. 2b, pp. 251-256, 2013.
-
(2013)
Przeglad Elektrotechniczny
, vol.89
, Issue.2 B
, pp. 251-256
-
-
Barabas, M.1
Boanea, G.2
Bogdan, R.A.3
Dobrota, V.4
-
16
-
-
85007341902
-
The deep learning vision for heterogeneous network traffic control-Proposal, challenges, and future perspective
-
N. Kato, et al., "The deep learning vision for heterogeneous network traffic control-Proposal, challenges, and future perspective," IEEE Wireless Commun.Mag., 2016, doi: 10.1109/MWC.2016.1600317WC.
-
(2016)
IEEE Wireless Commun.Mag.
-
-
Kato, N.1
-
17
-
-
85032434210
-
State-of-the-art deep learning: Evolving machine intelligence toward tomorrow's intelligent network traffic control systems
-
Z. M. Fadlullah, et al., "State-of-the-art deep learning: Evolving machine intelligence toward tomorrow's intelligent network traffic control systems," IEEE Commun. Surveys Tuts., 2017, doi: 10.1109/COMST.2017.2707140.
-
(2017)
IEEE Commun. Surveys Tuts.
-
-
Fadlullah, Z.M.1
-
18
-
-
85032435633
-
-
Google DeepMind, May
-
Google DeepMind, "AlphaGo," (2017, May). [Online]. Available: https://deepmind.com/alpha-go
-
(2017)
AlphaGo
-
-
-
19
-
-
33745805403
-
A fast learning algorithm for deep belief nets
-
G. E. Hinton, S. Osindero, and Y.-W. Teh, "A fast learning algorithm for deep belief nets," Neural Comput., vol. 18, no. 7, pp. 1527-1554, 2006.
-
(2006)
Neural Comput.
, vol.18
, Issue.7
, pp. 1527-1554
-
-
Hinton, G.E.1
Osindero, S.2
Teh, Y.-W.3
-
20
-
-
84986559262
-
Programmable packet scheduling at line rate
-
A. Sivaraman, et al., "Programmable packet scheduling at line rate," in Proc. ACM SIGCOMM Conf., 2016, pp. 44-57.
-
(2016)
Proc. ACM SIGCOMM Conf.
, pp. 44-57
-
-
Sivaraman, A.1
-
21
-
-
72249104877
-
RouteBricks: Exploiting parallelism to scale software routers
-
USA
-
D. Mihai, et al., "RouteBricks: exploiting parallelism to scale software routers," in Proc. ACM SIGOPS 22nd Symp. Operating Syst. Principles, USA, 2009, pp. 15-28.
-
(2009)
Proc. ACM SIGOPS 22nd Symp. Operating Syst. Principles
, pp. 15-28
-
-
Mihai, D.1
-
22
-
-
43849090343
-
Supervised learning in sensor networks: New approaches with routing, reliability optimizations
-
Y. Wang, M. Martonosi, and L. S. Peh, "Supervised learning in sensor networks: New approaches with routing, reliability optimizations," in Proc. 3rd Annu. IEEE Commun. Soc. Sensor Ad Hoc Commun. Netw., 2006, pp. 256-265.
-
(2006)
Proc. 3rd Annu IEEE Commun. Soc. Sensor Ad Hoc Commun. Netw
, pp. 256-265
-
-
Wang, Y.1
Martonosi, M.2
Peh, L.S.3
-
25
-
-
84890525984
-
Deep convolutional neural networks for LVCSR
-
T. N. Sainath, A.-R. Mohamed, B. Kingsbury, and B. Ramabhadran, "Deep convolutional neural networks for LVCSR," in Proc. IEEE Int. Conf. Acoust. Speech Signal Process., 2013, pp. 8614-8618.
-
(2013)
Proc. IEEE Int. Conf. Acoust. Speech Signal Process.
, pp. 8614-8618
-
-
Sainath, T.N.1
Mohamed, A.-R.2
Kingsbury, B.3
Ramabhadran, B.4
-
26
-
-
85028423387
-
-
Aug.
-
The iBrain is here and it's already inside your phone, Aug. 2016. [Online]. Available: https://backchannel.com/anexclusive-look-at-how-ai-and-machine-learning-work-at-apple-8dbfb131932b#.43bf9cm00
-
(2016)
The IBrain Is Here and It's Already Inside Your Phone
-
-
-
27
-
-
84907500988
-
Deep architecture for traffic flow prediction: Deep belief networks with multitask learning
-
Oct.
-
W. Huang, G. Song, H. Hong, and K. Xie, "Deep architecture for traffic flow prediction: Deep belief networks with multitask learning," IEEE Trans. Intell. Transp. Syst., vol. 15, no. 5, pp. 2191-2201, Oct. 2014.
-
(2014)
IEEE Trans. Intell. Transp. Syst.
, vol.15
, Issue.5
, pp. 2191-2201
-
-
Huang, W.1
Song, G.2
Hong, H.3
Xie, K.4
-
28
-
-
84944735469
-
-
Cambridge MA, USA: MIT Press
-
I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. Cambridge, MA, USA: MIT Press, 2016. [Online]. Available: www.deeplearningbook.org
-
(2016)
Deep Learning
-
-
Goodfellow, I.1
Bengio, Y.2
Courville, A.3
-
29
-
-
84865595751
-
An introduction to restricted Boltzmann machines
-
Springer
-
A. Fischer and I. Christian, "An introduction to restricted Boltzmann machines," in Progress Pattern Recog., Image Anal., Comput. Vis., Appl., Springer, 2012, pp. 14-36.
-
(2012)
Progress Pattern Recog., Image Anal., Comput. Vis., Appl
, pp. 14-36
-
-
Fischer, A.1
Christian, I.2
-
30
-
-
0013344078
-
Training products of experts by minimizing contrastive divergence
-
G. E. Hinton,"Training products of experts by minimizing contrastive divergence," Neural Comput., vol. 14, no. 8, pp. 1771-1800, 2002.
-
(2002)
Neural Comput.
, vol.14
, Issue.8
, pp. 1771-1800
-
-
Hinton, G.E.1
-
32
-
-
84898949859
-
Top-down regularization of deep belief networks
-
H. Goh, N. Thome, M. Cord, and J.-H. Lim, "Top-down regularization of deep belief networks," in Proc. Advances Neural Inf. Process. Syst., 2013, pp. 1878-1886.
-
(2013)
Proc. Advances Neural Inf. Process. Syst.
, pp. 1878-1886
-
-
Goh, H.1
Thome, N.2
Cord, M.3
Lim, J.-H.4
-
33
-
-
84963853667
-
Privacy preserving deep computation model on cloud for big data feature learning
-
May
-
Q. Zhang, L. T. Yang, and Z. Chen, "Privacy preserving deep computation model on cloud for big data feature learning," IEEE Trans. Comput., vol. 65, no. 5, pp. 1351-1362, May 2016.
-
(2016)
IEEE Trans. Comput.
, vol.65
, Issue.5
, pp. 1351-1362
-
-
Zhang, Q.1
Yang, L.T.2
Chen, Z.3
-
34
-
-
85032444725
-
-
Accessed on: May 2017
-
CAIDA. [Online]. Available: www.caida.org/home/, Accessed on: May 2017.
-
CAIDA
-
-
-
35
-
-
79955893580
-
-
Technical University of Denmark
-
A. Fog, "Instruction Tables: Lists of Instruction Latencies, Throughputs and Micro-Operation Breakdowns for Intel, AMD and VIA CPUs," Technical University of Denmark, pp. 231-247, 2012.
-
(2012)
Instruction Tables: Lists of Instruction Latencies, Throughputs and Micro-Operation Breakdowns for Intel, AMD and VIA CPUs
, pp. 231-247
-
-
Fog, A.1
-
36
-
-
85032456064
-
-
Accessed on: May 2017
-
Comparison of deep learning software. [Online]. Available: https://en.wikipedia.org/wiki/Comparison-of-deep-learning-software, Accessed on: May 2017.
-
Comparison of Deep Learning Software
-
-
|