메뉴 건너뛰기




Volumn 0, Issue , 2017, Pages 2765-2771

End-to-end optimization of goal-driven and visually grounded dialogue systems

Author keywords

[No Author keywords available]

Indexed keywords

DEEP LEARNING; HUMAN COMPUTER INTERACTION; MACHINE LEARNING; SPEECH PROCESSING;

EID: 85031897383     PISSN: 10450823     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.24963/ijcai.2017/385     Document Type: Conference Paper
Times cited : (110)

References (35)
  • 3
    • 41549109070 scopus 로고    scopus 로고
    • Grounded cognition
    • L. Barsalou. Grounded cognition. Annu. Rev. Psychol., 59:617-645, 2008.
    • (2008) Annu. Rev. Psychol. , vol.59 , pp. 617-645
    • Barsalou, L.1
  • 4
    • 0142166851 scopus 로고    scopus 로고
    • A neural probabilistic language model
    • Feb.
    • Y. Bengio, R. Ducharme, P. Vincent, and C. Jauvin. A neural probabilistic language model. JMLR, 3(Feb):1137-1155, 2003.
    • (2003) JMLR , vol.3 , pp. 1137-1155
    • Bengio, Y.1    Ducharme, R.2    Vincent, P.3    Jauvin, C.4
  • 5
    • 37249045119 scopus 로고
    • Contributing to discourse
    • H. Clark and E. Schaefer. Contributing to discourse. Cognitive Science, 13(2):259-294, 1989.
    • (1989) Cognitive Science , vol.13 , Issue.2 , pp. 259-294
    • Clark, H.1    Schaefer, E.2
  • 9
    • 34247587828 scopus 로고    scopus 로고
    • User modeling for spoken dialogue system evaluation
    • W. Eckert, E. Levin, and R. Pieraccini. User modeling for spoken dialogue system evaluation. In Proc. of ASRU, 1997.
    • (1997) Proc. of ASRU
    • Eckert, W.1    Levin, E.2    Pieraccini, R.3
  • 12
    • 70450139546 scopus 로고    scopus 로고
    • Machine learning for spoken dialogue systems
    • O. Lemon and O. Pietquin. Machine learning for spoken dialogue systems. In Proc. of Interspeech, 2007.
    • (2007) Proc. of Interspeech
    • Lemon, O.1    Pietquin, O.2
  • 13
    • 33745216332 scopus 로고    scopus 로고
    • Learning dialogue strategies within the markov decision process framework
    • E. Levin, R. Pieraccini, and W. Eckert. Learning dialogue strategies within the markov decision process framework. In Proc. of ASRU, 1997.
    • (1997) Proc. of ASRU
    • Levin, E.1    Pieraccini, R.2    Eckert, W.3
  • 15
    • 85072827450 scopus 로고    scopus 로고
    • How NOT to evaluate your dialogue system: An empirical study of unsupervised evaluation metrics for dialogue response generation
    • C. Liu, R. Lowe, I. Serban, M. Noseworthy, L. Charlin, and J. Pineau. How NOT to evaluate your dialogue system: An empirical study of unsupervised evaluation metrics for dialogue response generation. In Proc. of EMNLP, 2016.
    • (2016) Proc. of EMNLP
    • Liu, C.1    Lowe, R.2    Serban, I.3    Noseworthy, M.4    Charlin, L.5    Pineau, J.6
  • 17
    • 84988430909 scopus 로고    scopus 로고
    • The ubuntu dialogue corpus: A large dataset for research in unstructured multi-turn dialogue systems
    • R. Lowe, N. Pow, I. Serban, and J. Pineau. The ubuntu dialogue corpus: A large dataset for research in unstructured multi-turn dialogue systems. In Proc. of SIGdial, 2015.
    • (2015) Proc. of SIGdial
    • Lowe, R.1    Pow, N.2    Serban, I.3    Pineau, J.4
  • 18
    • 85018917850 scopus 로고    scopus 로고
    • Hierarchical question-image co-attention for visual question answering
    • J. Lu, J. Yang, D. Batra, and D. Parikh. Hierarchical Question-Image Co-Attention for Visual Question Answering. In Proc. of NIPS, 2016.
    • (2016) Proc. of NIPS
    • Lu, J.1    Yang, J.2    Batra, D.3    Parikh, D.4
  • 19
    • 47749089274 scopus 로고    scopus 로고
    • Learning language from perceptual context: A challenge problem for AI
    • R. Mooney. Learning language from perceptual context: A challenge problem for AI. In Proc. of the 2006 AAAI Fellows Symposium, 2006.
    • (2006) Proc. of the 2006 AAAI Fellows Symposium
    • Mooney, R.1
  • 20
    • 0141596576 scopus 로고    scopus 로고
    • Policy invariance under reward transformations: Theory and application to reward shaping
    • A. Ng, D. Harada, and S. Russell. Policy invariance under reward transformations: Theory and application to reward shaping. In Proc. of ICML, 1999.
    • (1999) Proc. of ICML
    • Ng, A.1    Harada, D.2    Russell, S.3
  • 21
    • 84874127849 scopus 로고    scopus 로고
    • A survey on metrics for the evaluation of user simulations
    • 003
    • O. Pietquin and H. Hastie. A survey on metrics for the evaluation of user simulations. The Knowledge Engineering Review, 28(1):59-73, 003 2013.
    • (2013) The Knowledge Engineering Review , vol.28 , Issue.1 , pp. 59-73
    • Pietquin, O.1    Hastie, H.2
  • 24
    • 0036663627 scopus 로고    scopus 로고
    • Learning visually grounded words and syntax for a scene description task
    • D. Roy. Learning visually grounded words and syntax for a scene description task. Computer speech & language, 16(3):353-385, 2002.
    • (2002) Computer Speech & Language , vol.16 , Issue.3 , pp. 353-385
    • Roy, D.1
  • 25
    • 33747607273 scopus 로고    scopus 로고
    • A survey of statistical user simulation techniques for reinforcement-learning of dialogue management strategies
    • J. Schatzmann, K. Weilhammer, M. Stuttle, and S. Young. A survey of statistical user simulation techniques for reinforcement-learning of dialogue management strategies. The knowledge engineering review, 21(2):97-126, 2006.
    • (2006) The Knowledge Engineering Review , vol.21 , Issue.2 , pp. 97-126
    • Schatzmann, J.1    Weilhammer, K.2    Stuttle, M.3    Young, S.4
  • 27
    • 84963949906 scopus 로고    scopus 로고
    • Mastering the game of go with deep neural networks and tree search
    • D. Silver, A. Huang, C. Maddison, A. Guez, L. Sifre, G. Van Den Driessche, et al. Mastering the game of go with deep neural networks and tree search. Nature, 529(7587):484-489, 2016.
    • (2016) Nature , vol.529 , Issue.7587 , pp. 484-489
    • Silver, D.1    Huang, A.2    Maddison, C.3    Guez, A.4    Sifre, L.5    Van Den Driessche, G.6
  • 30
    • 33750244274 scopus 로고    scopus 로고
    • Policy gradient methods for reinforcement learning with function approximation
    • R. Sutton, D. McAllester, S. Singh, Y. Mansour, et al. Policy gradient methods for reinforcement learning with function approximation. In Proc. of NIPS, 1999.
    • (1999) Proc. of NIPS
    • Sutton, R.1    McAllester, D.2    Singh, S.3    Mansour, Y.4
  • 32
    • 85065183198 scopus 로고    scopus 로고
    • Paradise: A framework for evaluating spoken dialogue agents
    • M. Walker, D. Litman, C. Kamm, and A. Abella. Paradise: A framework for evaluating spoken dialogue agents. In Proc. of ACL, 1997.
    • (1997) Proc. of ACL
    • Walker, M.1    Litman, D.2    Kamm, C.3    Abella, A.4
  • 33
    • 84911514327 scopus 로고
    • Eliza-a computer program for the study of natural language communication between man and machine
    • J. Weizenbaum. Eliza-a computer program for the study of natural language communication between man and machine. Commun. ACM, 9(1):36-45, 1966.
    • (1966) Commun. ACM , vol.9 , Issue.1 , pp. 36-45
    • Weizenbaum, J.1
  • 34
    • 33750703175 scopus 로고    scopus 로고
    • Partially observable markov decision processes for spoken dialog systems
    • J. Williams and S. Young. Partially observable markov decision processes for spoken dialog systems. Computer Speech & Language, 21(2):393-422, 2007.
    • (2007) Computer Speech & Language , vol.21 , Issue.2 , pp. 393-422
    • Williams, J.1    Young, S.2
  • 35
    • 0000337576 scopus 로고
    • Simple statistical gradient-following algorithms for connectionist reinforcement learning
    • R. Williams. Simple statistical gradient-following algorithms for connectionist reinforcement learning. Machine learning, 8(3-4):229-256, 1992.
    • (1992) Machine Learning , vol.8 , Issue.3-4 , pp. 229-256
    • Williams, R.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.