-
1
-
-
0041846627
-
Applications of magnetic nanoparticles in biomedicine
-
Q. A. Pankhurst, J. Connolly, S. K. Jones, and J. Dobson, "Applications of magnetic nanoparticles in biomedicine," J Phys Appl Phys 36, R167-R181 (2003). 10.1088/0022-3727/36/13/201
-
(2003)
J Phys Appl Phys
, vol.36
, pp. R167-R181
-
-
Pankhurst, Q.A.1
Connolly, J.2
Jones, S.K.3
Dobson, J.4
-
2
-
-
0035058509
-
Characterization and MRI study of surfactant-coated superparamagnetic nanoparticles administrated into the rat brain
-
D. K. Kim, "Characterization and MRI study of surfactant-coated superparamagnetic nanoparticles administrated into the rat brain," J Magn Magn Mater 225, 256-261 (2001). 10.1016/s0304-8853(00)01255-5
-
(2001)
J Magn Magn Mater
, vol.225
, pp. 256-261
-
-
Kim, D.K.1
-
3
-
-
11044222650
-
Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications
-
A. K. Gupta and M. Gupta, "Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications," Biomaterials 26 (18), 3995-4021 (2005). 10.1016/j.biomaterials.2004.10.012
-
(2005)
Biomaterials
, vol.26
, Issue.18
, pp. 3995-4021
-
-
Gupta, A.K.1
Gupta, M.2
-
4
-
-
84935857621
-
A novel approach for detection and quantification of magnetic nanomarkers using a spin valve GMR-integrated microfluidic sensor
-
J. Devkota et al., "A novel approach for detection and quantification of magnetic nanomarkers using a spin valve GMR-integrated microfluidic sensor," RSC Adv 5 (63), 51169-51175 (2015). 10.1039/c5ra09365a
-
(2015)
RSC Adv
, vol.5
, Issue.63
, pp. 51169-51175
-
-
Devkota, J.1
-
5
-
-
84927515920
-
Magnetic-based biomolecule detection using giant magnetoresistance sensors
-
G. Kokkinis, M. Jamalieh, F. Cardoso, S. Cardoso, F. Keplinger, and I. Giouroudi, "Magnetic-based biomolecule detection using giant magnetoresistance sensors," J. Appl. Phys. 117 (17), 17B731 (2015). 10.1063/1.4917244
-
(2015)
J. Appl. Phys.
, vol.117
, Issue.17
, pp. 17B731
-
-
Kokkinis, G.1
Jamalieh, M.2
Cardoso, F.3
Cardoso, S.4
Keplinger, F.5
Giouroudi, I.6
-
6
-
-
84880804107
-
Selective manipulation of superparamagnetic beads by a magnetic microchip
-
C. P. Gooneratne, O. Yassine, I. Giouroudi, and J. Kosel, "Selective manipulation of superparamagnetic beads by a magnetic microchip," IEEE Trans. Magn. 49 (7), 3418-3421 (2013). 10.1109/tmag.2013.2244857
-
(2013)
IEEE Trans. Magn.
, vol.49
, Issue.7
, pp. 3418-3421
-
-
Gooneratne, C.P.1
Yassine, O.2
Giouroudi, I.3
Kosel, J.4
-
7
-
-
84865225655
-
A planar conducting micro-loop structure for transportation of magnetic beads: An approach towards rapid sensing and quantification of biological entities
-
C. Gooneratne, I. Giouroudi, and J. Kosel, "A planar conducting micro-loop structure for transportation of magnetic beads: An approach towards rapid sensing and quantification of biological entities," Sens. Lett. 10, 769-773 (2012).
-
(2012)
Sens. Lett.
, vol.10
, pp. 769-773
-
-
Gooneratne, C.1
Giouroudi, I.2
Kosel, J.3
-
8
-
-
34548834702
-
Phosphate adsorption properties of magnetite-based nanoparticles
-
T. J. Daou et al., "Phosphate adsorption properties of magnetite-based nanoparticles," Chem. Mater. 19 (18), 4494-4505 (2007). 10.1021/cm071046v
-
(2007)
Chem. Mater.
, vol.19
, Issue.18
, pp. 4494-4505
-
-
Daou, T.J.1
-
9
-
-
72649100818
-
4 nanowires and their application as high performance anode in lithium ion batteries
-
4 nanowires and their application as high performance anode in lithium ion batteries," Chem. Commun. 47, 7360 (2009). 10.1039/b916376j
-
(2009)
Chem. Commun.
, vol.47
, pp. 7360
-
-
Muraliganth, T.1
Vadivel Murugan, A.2
Manthiram, A.3
-
10
-
-
55949113913
-
BioMEMS in diagnostics: A review and recent developments
-
I. Giouroudi, J. Kosel, and C. Scheffer, "BioMEMS in diagnostics: A review and recent developments," Recent Pat. Eng. 2 (2), 114-121 (2008). 10.2174/187221208784705297
-
(2008)
Recent Pat. Eng.
, vol.2
, Issue.2
, pp. 114-121
-
-
Giouroudi, I.1
Kosel, J.2
Scheffer, C.3
-
11
-
-
47649117424
-
Magnetic anisotropy in Ni-Si nanoparticle films produced by ultrashort pulsed laser deposition
-
V. Iannotti et al., "Magnetic anisotropy in Ni-Si nanoparticle films produced by ultrashort pulsed laser deposition," J. Magn. Magn. Mater. 320 (20), e594-e598 (2008). 10.1016/j.jmmm.2008.04.038
-
(2008)
J. Magn. Magn. Mater.
, vol.320
, Issue.20
, pp. e594-e598
-
-
Iannotti, V.1
-
12
-
-
84880824845
-
Synthesis, surface modification and characterisation of biocompatible magnetic iron oxide nanoparticles for biomedical applications
-
M. Mahdavi et al., "Synthesis, surface modification and characterisation of biocompatible magnetic iron oxide nanoparticles for biomedical applications," Molecules 18 (7), 7533-7548 (2013). 10.3390/molecules18077533
-
(2013)
Molecules
, vol.18
, Issue.7
, pp. 7533-7548
-
-
Mahdavi, M.1
-
13
-
-
0025419258
-
Physico -chemical regularities of obtaining highlydispersed magnetite by the method of chemical condensation
-
N. M. Gribanov, E. E. Bibik, O. V. Buzunov, and V. N. Naumov, "Physico -chemical regularities of obtaining highlydispersed magnetite by the method of chemical condensation," J. Magn. Magn. Mater. 85, 7-10 (1990). 10.1016/0304-8853(90)90005-b
-
(1990)
J. Magn. Magn. Mater.
, vol.85
, pp. 7-10
-
-
Gribanov, N.M.1
Bibik, E.E.2
Buzunov, O.V.3
Naumov, V.N.4
-
14
-
-
4644223897
-
Size and shape-controlled magnetic (Cr, Mn, Fe, Co, Ni) oxide nanocrystals via a simple and general approach
-
N. R. Jana, Y. Chen, and X. Peng, "Size and shape-controlled magnetic (Cr, Mn, Fe, Co, Ni) oxide nanocrystals via a simple and general approach," Chem. Mater. 16, 3931-3935 (2004). 10.1021/cm049221k
-
(2004)
Chem. Mater.
, vol.16
, pp. 3931-3935
-
-
Jana, N.R.1
Chen, Y.2
Peng, X.3
-
15
-
-
0033573123
-
A new nonhydrolytic single-precursor approach to surfactant-capped nanocrystals of transition metal oxides
-
J. Rockenberger, E. C. Scher, and A. P. Alivisatos, "A new nonhydrolytic single-precursor approach to surfactant-capped nanocrystals of transition metal oxides," J. Am. Chem. Soc. 121, 11595-11596 (1999). 10.1021/ja993280v
-
(1999)
J. Am. Chem. Soc.
, vol.121
, pp. 11595-11596
-
-
Rockenberger, J.1
Scher, E.C.2
Alivisatos, A.P.3
-
16
-
-
84861871386
-
Comparison and functionalization study of microemulsion-prepared magnetic iron oxide nanoparticles
-
C. Okoli, M. Sanchez-Dominguez, M. Boutonnet et al., "Comparison and functionalization study of microemulsion-prepared magnetic iron oxide nanoparticles," Langmuir 28, 8479-8485 (2012). 10.1021/la300599q
-
(2012)
Langmuir
, vol.28
, pp. 8479-8485
-
-
Okoli, C.1
Sanchez-Dominguez, M.2
Boutonnet, M.3
-
17
-
-
34247473527
-
4 nanowires with high aspect ratio and uniformity
-
4 nanowires with high aspect ratio and uniformity," Mater. Lett. 61 (14-15), 3159-3162 (2007). 10.1016/j.matlet.2006.11.023
-
(2007)
Mater. Lett.
, vol.61
, Issue.14-15
, pp. 3159-3162
-
-
He, K.1
Xu, C.-Y.2
Zhen, L.3
Shao, W.-Z.4
-
18
-
-
84879917281
-
3 nanostructures: Controlled synthesis and high-index plane-enhanced photodegradation by visible light
-
3 nanostructures: Controlled synthesis and high-index plane-enhanced photodegradation by visible light," J Mater Chem A 23, 6888-6894 (2013).
-
(2013)
J Mater Chem A
, vol.23
, pp. 6888-6894
-
-
Wu, W.1
-
19
-
-
11144325118
-
Controlled microwave heating in modern organic synthesis
-
C. O. Kappe, "Controlled microwave heating in modern organic synthesis," Angew. Chem. Int. Ed. 43 (46), 6250-6284 (2004). 10.1002/anie.200400655
-
(2004)
Angew. Chem. Int. Ed.
, vol.43
, Issue.46
, pp. 6250-6284
-
-
Kappe, C.O.1
-
20
-
-
84870672876
-
Microscopical and physical characterization of microwave and microwave-hydrothermal synthesis products
-
X. H. Zhu and Q. M. Hang, "Microscopical and physical characterization of microwave and microwave-hydrothermal synthesis products," Micron 44, 21-44 (2013). 10.1016/j.micron.2012.06.005
-
(2013)
Micron
, vol.44
, pp. 21-44
-
-
Zhu, X.H.1
Hang, Q.M.2
-
21
-
-
0036795116
-
4) powders
-
4) powders," Mater. Lett. 56 (4), 571-577 (2002). 10.1016/s0167-577x(02)00554-2
-
(2002)
Mater. Lett.
, vol.56
, Issue.4
, pp. 571-577
-
-
Khollam, Y.B.1
-
22
-
-
0036955291
-
Microwave flash synthesis of iron and magnetite particles by disproportionation of ferrous alcoholic solutions
-
T. Caillot, D. Aymes, D. Stuerga, N. Viart, and G. Pourroy, "Microwave flash synthesis of iron and magnetite particles by disproportionation of ferrous alcoholic solutions," J. Mater. Sci. 37 (23), 5153-5158 (2002). 10.1023/a:1021028809382
-
(2002)
J. Mater. Sci.
, vol.37
, Issue.23
, pp. 5153-5158
-
-
Caillot, T.1
Aymes, D.2
Stuerga, D.3
Viart, N.4
Pourroy, G.5
-
23
-
-
77952761837
-
Unique role of ionic liquid in microwave-assisted synthesis of monodisperse magnetite nanoparticles
-
H. Hu et al., "Unique role of ionic liquid in microwave-assisted synthesis of monodisperse magnetite nanoparticles," Chem. Commun. 46 (22), 3866 (2010). 10.1039/b927321b
-
(2010)
Chem. Commun.
, vol.46
, Issue.22
, pp. 3866
-
-
Hu, H.1
-
24
-
-
33645967189
-
4 nanoparticles used as a precursor of nanocomposites and ferrofluids
-
4 nanoparticles used as a precursor of nanocomposites and ferrofluids," J. Magn. Magn. Mater. 303 (1), 60-68 (2006). 10.1016/j.jmmm.2005.10.230
-
(2006)
J. Magn. Magn. Mater.
, vol.303
, Issue.1
, pp. 60-68
-
-
Hong, R.Y.1
Pan, T.T.2
Li, H.Z.3
-
25
-
-
84866245601
-
Ultrafine Magnetite Nanopowder: Synthesis, Characterization, and Preliminary Use As Filler of Polymethylmethacrylate Nanocomposites
-
P. Russo, "Ultrafine magnetite nanopowder: Synthesis, characterization, and preliminary use as filler of polymethylmethacrylate nanocomposites," J. Nanotechnol. 2012. 10.1155/2012/728326
-
J. Nanotechnol.
, vol.2012
-
-
Russo, P.1
-
26
-
-
84933521998
-
Scale-up synthesis of iron oxide nanoparticles by microwave-assisted thermal decomposition
-
L. Gonzalez-Moragas, S.-M. Yu, N. Murillo-Cremaes, A. Laromaine, and A. Roig, "Scale-up synthesis of iron oxide nanoparticles by microwave-assisted thermal decomposition," Chem. Eng. J. 281, 87-95 (2015). 10.1016/j.cej.2015.06.066
-
(2015)
Chem. Eng. J.
, vol.281
, pp. 87-95
-
-
Gonzalez-Moragas, L.1
Yu, S.-M.2
Murillo-Cremaes, N.3
Laromaine, A.4
Roig, A.5
-
27
-
-
84857044339
-
Magnetite syntheses from room temperature to 150°C with and without microwaves
-
S. Komarneni et al., "Magnetite syntheses from room temperature to 150°C with and without microwaves," Ceram. Int. 38 (3), 2563-2568 (2012). 10.1016/j.ceramint.2011.11.027
-
(2012)
Ceram. Int.
, vol.38
, Issue.3
, pp. 2563-2568
-
-
Komarneni, S.1
-
28
-
-
34248348325
-
Microwave-assisted synthesis and magnetic property of magnetite and hematite nanoparticles
-
W.-W. Wang, Y.-J. Zhu, and M.-L. Ruan, "Microwave-assisted synthesis and magnetic property of magnetite and hematite nanoparticles," J. Nanoparticle Res. 9 (3), 419-426 (2007). 10.1007/s11051-005-9051-8
-
(2007)
J. Nanoparticle Res.
, vol.9
, Issue.3
, pp. 419-426
-
-
Wang, W.-W.1
Zhu, Y.-J.2
Ruan, M.-L.3
-
29
-
-
84976606755
-
Tailoring of magnetite powder properties for enhanced phosphate removal: Effect of PEG addition in the synthesis process
-
A. B. Savić et al., "Tailoring of magnetite powder properties for enhanced phosphate removal: Effect of PEG addition in the synthesis process," Powder Technol. 301, 511-519 (2016). 10.1016/j.powtec.2016.06.028
-
(2016)
Powder Technol.
, vol.301
, pp. 511-519
-
-
Savić, A.B.1
-
30
-
-
50249093204
-
Polyethylene glycol-assisted hydrothermal growth of magnetite nanowires: Synthesis and magnetic properties
-
F. A. Harraz, "Polyethylene glycol-assisted hydrothermal growth of magnetite nanowires: Synthesis and magnetic properties," Phys. E Low-Dimens. Syst. Nanostructures 40 (10), 3131-3136 (2008). 10.1016/j.physe.2008.05.007
-
(2008)
Phys. e Low-Dimens. Syst. Nanostructures
, vol.40
, Issue.10
, pp. 3131-3136
-
-
Harraz, F.A.1
-
31
-
-
84884288497
-
Cyclodextrin-based supramolecular systems for drug delivery: Recent progress and future perspective
-
J. Zhang and P. X. Ma, "Cyclodextrin-based supramolecular systems for drug delivery: Recent progress and future perspective," Adv. Drug Deliv. Rev. 65 (9), 1215-1233 (2013). 10.1016/j.addr.2013.05.001
-
(2013)
Adv. Drug Deliv. Rev.
, vol.65
, Issue.9
, pp. 1215-1233
-
-
Zhang, J.1
Ma, P.X.2
-
32
-
-
66649136224
-
Raman spectroscopy of iron oxides and (oxy)hydroxides at low laser power and possible applications in environmental magnetic studies
-
M. Hanesch, "Raman spectroscopy of iron oxides and (oxy)hydroxides at low laser power and possible applications in environmental magnetic studies," Geophys. J. Int. 177 (3), 941-948 (2009). 10.1111/j.1365-246x.2009.04122.x
-
(2009)
Geophys. J. Int.
, vol.177
, Issue.3
, pp. 941-948
-
-
Hanesch, M.1
-
33
-
-
18844407480
-
Raman microspectroscopy of some iron oxides and oxyhydroxides
-
D. L. Faria, V. Silva, and M. T. Oliveira, "Raman microspectroscopy of some iron oxides and oxyhydroxides," J. Raman Spectrosc. 28, 873-878 (1997). 10.1002/(sici)1097-4555(199711)28:11<873::aid-jrs177>3.3.co;2-2
-
(1997)
J. Raman Spectrosc.
, vol.28
, pp. 873-878
-
-
Faria, D.L.1
Silva, V.2
Oliveira, M.T.3
-
34
-
-
0344873808
-
4): Laser-induced thermal effects and oxidation
-
4): Laser-induced thermal effects and oxidation," J. Raman Spectrosc. 34 (11), 845-852 (2003). 10.1002/jrs.1056
-
(2003)
J. Raman Spectrosc.
, vol.34
, Issue.11
, pp. 845-852
-
-
Shebanova, O.N.1
Lazor, P.2
-
35
-
-
84998694519
-
Facile synthesis polyethylene glycol coated magnetite nanoparticles for high colloidal stability
-
M. F. Tai, C. W. Lai, and S. B. Abdul Hamid, "Facile synthesis polyethylene glycol coated magnetite nanoparticles for high colloidal stability," J. Nanomater. 2016, 1-7. 10.1155/2016/8612505
-
J. Nanomater.
, vol.2016
, pp. 1-7
-
-
Tai, M.F.1
Lai, C.W.2
Abdul Hamid, S.B.3
-
36
-
-
33745013677
-
Microstructural study and size control of iron oxide nanoparticles produced by microemulsion technique
-
T. Koutzarova, S. Kolev, C. Ghelev, D. Paneva, and I. Nedkov, "Microstructural study and size control of iron oxide nanoparticles produced by microemulsion technique," Phys. Status Solidi C 3 (5), 1302-1307 (2006). 10.1002/pssc.200563115
-
(2006)
Phys. Status Solidi C
, vol.3
, Issue.5
, pp. 1302-1307
-
-
Koutzarova, T.1
Kolev, S.2
Ghelev, C.3
Paneva, D.4
Nedkov, I.5
-
37
-
-
0038497618
-
-
American Scientific Publishers
-
M. A. Willard, L. K. Kurihara, E. E. Carpenter, S. Calvin, and Harris, Encyclopedia of Nanoscience and Nanotechnology, vol. 1. American Scientific Publishers, 2004.
-
(2004)
Encyclopedia of Nanoscience and Nanotechnology
, vol.1
-
-
Willard, M.A.1
Kurihara, L.K.2
Carpenter, E.E.3
Calvin, S.4
Harris5
-
39
-
-
34547811587
-
3 nanoparticles synthesized through self-propagating combustion route
-
3 nanoparticles synthesized through self-propagating combustion route," Synth. React. Inorg. Met.-Org. Nano-Met. Chem. 37 (6), 409-412 (2007). 10.1080/15533170701465861
-
(2007)
Synth. React. Inorg. Met.-Org. Nano-Met. Chem.
, vol.37
, Issue.6
, pp. 409-412
-
-
Basavaraja, S.1
Vijayanand, H.2
Venkataraman, A.3
Deshpande, U.P.4
Shripathi, T.5
-
40
-
-
38749102423
-
3+ ions in oxide materials
-
3+ ions in oxide materials," Appl. Surf. Sci. 254 (8), 2441-2449 (2008). 10.1016/j.apsusc.2007.09.063
-
(2008)
Appl. Surf. Sci.
, vol.254
, Issue.8
, pp. 2441-2449
-
-
Yamashita, T.1
Hayes, P.2
-
41
-
-
79251598596
-
Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Cr, Mn, Fe, Co and Ni
-
M. C. Biesinger, B. P. Payne, A. P. Grosvenor, L. W. M. Lau, A. R. Gerson, and R. S. C. Smart, "Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Cr, Mn, Fe, Co and Ni," Appl. Surf. Sci. 257 (7), 2717-2730 (2011). 10.1016/j.apsusc.2010.10.051
-
(2011)
Appl. Surf. Sci.
, vol.257
, Issue.7
, pp. 2717-2730
-
-
Biesinger, M.C.1
Payne, B.P.2
Grosvenor, A.P.3
Lau, L.W.M.4
Gerson, A.R.5
Smart, R.S.C.6
-
42
-
-
33748808412
-
Hydrothermal synthesis of monodisperse magnetite nanoparticles
-
T. J. Daou et al., "Hydrothermal synthesis of monodisperse magnetite nanoparticles," Chem. Mater. 18 (18), 4399-4404 (2006). 10.1021/cm060805r
-
(2006)
Chem. Mater.
, vol.18
, Issue.18
, pp. 4399-4404
-
-
Daou, T.J.1
-
43
-
-
84941644049
-
4) as cost effective alternative for oxidative cyanation of tertiary amines via CH activation
-
4) as cost effective alternative for oxidative cyanation of tertiary amines via CH activation," Appl. Catal. Gen. 498, 25-31 (2015). 10.1016/j.apcata.2015.03.018
-
(2015)
Appl. Catal. Gen.
, vol.498
, pp. 25-31
-
-
Panwar, V.1
Kumar, P.2
Bansal, A.3
Ray, S.S.4
Jain, S.L.5
-
44
-
-
85069507682
-
Synthesis of magnetic iron oxides from ferrous sulfate and substitute amines
-
M. Stoia, A. Tamas, G. Rusu, and J. Morosanu, "Synthesis of magnetic iron oxides from ferrous sulfate and substitute amines," Stud. Univ. Babes-Bolyai Chem. 61 (4) (2016).
-
(2016)
Stud. Univ. Babes-Bolyai Chem.
, vol.61
, Issue.4
-
-
Stoia, M.1
Tamas, A.2
Rusu, G.3
Morosanu, J.4
-
45
-
-
80054947909
-
Microwave-assisted one-step hydrothermal synthesis of pure iron oxide nanoparticles: Magnetite, maghemite and hematite
-
L. Hu, A. Percheron, D. Chaumont, and C.-H. Brachais, "Microwave-assisted one-step hydrothermal synthesis of pure iron oxide nanoparticles: Magnetite, maghemite and hematite," J. Sol-Gel Sci. Technol. 60 (2), 198-205 (2011). 10.1007/s10971-011-2579-4
-
(2011)
J. Sol-Gel Sci. Technol.
, vol.60
, Issue.2
, pp. 198-205
-
-
Hu, L.1
Percheron, A.2
Chaumont, D.3
Brachais, C.-H.4
|