메뉴 건너뛰기




Volumn 83, Issue 21, 2017, Pages

Coordinated regulation of the EIIMan and fruRKI operons of Streptococcus mutans by global and fructose-specific pathways

Author keywords

Catabolite repression; Dental caries; Fructose metabolism; Gene regulation; Sugar::phosphotransferase

Indexed keywords

CARBOHYDRATES; FRUCTOSE; GENE EXPRESSION; GENES; METABOLISM; PHYSIOLOGY;

EID: 85031661472     PISSN: 00992240     EISSN: 10985336     Source Type: Journal    
DOI: 10.1128/AEM.01403-17     Document Type: Article
Times cited : (19)

References (57)
  • 1
    • 0027291428 scopus 로고
    • Phosphoenolpyruvate: carbohydrate phosphotransferase systems of bacteria
    • Postma PW, Lengeler JW, Jacobson GR. 1993. Phosphoenolpyruvate: carbohydrate phosphotransferase systems of bacteria. Microbiol Rev 57:543-594
    • (1993) Microbiol Rev , vol.57 , pp. 543-594
    • Postma, P.W.1    Lengeler, J.W.2    Jacobson, G.R.3
  • 3
    • 84928901093 scopus 로고    scopus 로고
    • Fueling the caries process: carbohydrate metabolism and gene regulation by Streptococcus mutans
    • Moye ZD, Zeng L, Burne RA. 2014. Fueling the caries process: carbohydrate metabolism and gene regulation by Streptococcus mutans. J Oral Microbiol 6:24878-24892. https://doi.org/10.3402/jom.v6.24878
    • (2014) J Oral Microbiol , vol.6 , pp. 24878-24892
    • Moye, Z.D.1    Zeng, L.2    Burne, R.A.3
  • 4
    • 0042029402 scopus 로고    scopus 로고
    • Characterization of Streptococcus mutans strains deficient in EIIABMan of the sugar phosphotransferase system
    • Abranches J, Chen YY, Burne RA. 2003. Characterization of Streptococcus mutans strains deficient in EIIABMan of the sugar phosphotransferase system. Appl Environ Microbiol 69:4760-4769. https://doi.org/10.1128/AEM.69.8.4760-4769.2003
    • (2003) Appl Environ Microbiol , vol.69 , pp. 4760-4769
    • Abranches, J.1    Chen, Y.Y.2    Burne, R.A.3
  • 5
    • 77951061673 scopus 로고    scopus 로고
    • Utilization of lactose and galactose by Streptococcus mutans: transport, toxicity, and carbon catabolite repression
    • Zeng L, Das S, Burne RA. 2010. Utilization of lactose and galactose by Streptococcus mutans: transport, toxicity, and carbon catabolite repression. J Bacteriol 192:2434-2444. https://doi.org/10.1128/JB.01624-09
    • (2010) J Bacteriol , vol.192 , pp. 2434-2444
    • Zeng, L.1    Das, S.2    Burne, R.A.3
  • 6
    • 84904894155 scopus 로고    scopus 로고
    • Uptake and metabolism of N-acetylglucosamine and glucosamine by Streptococcus mutans
    • Moye ZD, Burne RA, Zeng L. 2014. Uptake and metabolism of N-acetylglucosamine and glucosamine by Streptococcus mutans. Appl Environ Microbiol 80:5053-5067. https://doi.org/10.1128/AEM.00820-14
    • (2014) Appl Environ Microbiol , vol.80 , pp. 5053-5067
    • Moye, Z.D.1    Burne, R.A.2    Zeng, L.3
  • 7
    • 33744766523 scopus 로고    scopus 로고
    • Different roles of EIIABMan and EIIGlc in regulation of energy metabolism, biofilm development, and competence in Streptococcus mutans
    • Abranches J, Candella MM, Wen ZT, Baker HV, Burne RA. 2006. Different roles of EIIABMan and EIIGlc in regulation of energy metabolism, biofilm development, and competence in Streptococcus mutans. J Bacteriol 188:3748-3756. https://doi.org/10.1128/JB.00169-06
    • (2006) J Bacteriol , vol.188 , pp. 3748-3756
    • Abranches, J.1    Candella, M.M.2    Wen, Z.T.3    Baker, H.V.4    Burne, R.A.5
  • 8
    • 84893001974 scopus 로고    scopus 로고
    • Modification of gene expression and virulence traits in Streptococcus mutans in response to carbohydrate availability
    • Moye ZD, Zeng L, Burne RA. 2014. Modification of gene expression and virulence traits in Streptococcus mutans in response to carbohydrate availability. Appl Environ Microbiol 80:972-985. https://doi.org/10.1128/AEM.03579-13
    • (2014) Appl Environ Microbiol , vol.80 , pp. 972-985
    • Moye, Z.D.1    Zeng, L.2    Burne, R.A.3
  • 9
    • 84953911753 scopus 로고    scopus 로고
    • Sucrose-and fructose-specific effects on the transcriptome of Streptococcus mutans, as determined by RNA sequencing
    • Zeng L, Burne RA. 2016. Sucrose-and fructose-specific effects on the transcriptome of Streptococcus mutans, as determined by RNA sequencing. Appl Environ Microbiol 82:146-156. https://doi.org/10.1128/AEM.02681-15
    • (2016) Appl Environ Microbiol , vol.82 , pp. 146-156
    • Zeng, L.1    Burne, R.A.2
  • 11
    • 0031031808 scopus 로고    scopus 로고
    • The phosphoenolpyruvate:sugar phosphotransferase system of oral streptococci and its role in the control of sugar metabolism
    • Vadeboncoeur C, Pelletier M. 1997. The phosphoenolpyruvate:sugar phosphotransferase system of oral streptococci and its role in the control of sugar metabolism. FEMS Microbiol Rev 19:187-207. https://doi.org/10.1111/j.1574-6976.1997.tb00297.x
    • (1997) FEMS Microbiol Rev , vol.19 , pp. 187-207
    • Vadeboncoeur, C.1    Pelletier, M.2
  • 12
    • 77349124258 scopus 로고    scopus 로고
    • Seryl-phosphorylated HPr regulates CcpAindependent carbon catabolite repression in conjunction with PTS permeases in Streptococcus mutans
    • Zeng L, Burne RA. 2010. Seryl-phosphorylated HPr regulates CcpAindependent carbon catabolite repression in conjunction with PTS permeases in Streptococcus mutans. Mol Microbiol 75:1145-1158. https://doi.org/10.1111/j.1365-2958.2009.07029.x
    • (2010) Mol Microbiol , vol.75 , pp. 1145-1158
    • Zeng, L.1    Burne, R.A.2
  • 13
    • 79953251969 scopus 로고    scopus 로고
    • The EIIABMan PTS permease regulates carbohydrate catabolite repression in Streptococcus gordonii
    • Tong H, Zeng L, Burne RA. 2011. The EIIABMan PTS permease regulates carbohydrate catabolite repression in Streptococcus gordonii. Appl Environ Microbiol 77:1957-1965. https://doi.org/10.1128/AEM.02385-10
    • (2011) Appl Environ Microbiol , vol.77 , pp. 1957-1965
    • Tong, H.1    Zeng, L.2    Burne, R.A.3
  • 14
    • 0032502003 scopus 로고    scopus 로고
    • The phosphoenolpyruvate: mannose phosphotransferase system of Streptococcus sali-varius. Functional and biochemical characterization of IIABL(Man) and IIABH(Man)
    • Pelletier M, Lortie LA, Frenette M, Vadeboncoeur C. 1998. The phosphoenolpyruvate: mannose phosphotransferase system of Streptococcus sali-varius. Functional and biochemical characterization of IIABL(Man) and IIABH(Man). Biochemistry 37:1604-1612
    • (1998) Biochemistry , vol.37 , pp. 1604-1612
    • Pelletier, M.1    Lortie, L.A.2    Frenette, M.3    Vadeboncoeur, C.4
  • 15
    • 0029845728 scopus 로고    scopus 로고
    • Catabolite regulation in a diauxic strain and a nondiauxic strain of Streptococcus bovis
    • Kearns DB, Russell JB. 1996. Catabolite regulation in a diauxic strain and a nondiauxic strain of Streptococcus bovis. Curr Microbiol 33:216-219. https://doi.org/10.1007/s002849900102
    • (1996) Curr Microbiol , vol.33 , pp. 216-219
    • Kearns, D.B.1    Russell, J.B.2
  • 16
    • 84946829570 scopus 로고    scopus 로고
    • Transcriptional and metabolic effects of glucose on Streptococcus pneumoniae sugar metabolism
    • Paixão L, Caldas J, Kloosterman TG, Kuipers OP, Vinga S, Neves AR. 2015. Transcriptional and metabolic effects of glucose on Streptococcus pneumoniae sugar metabolism. Front Microbiol 6:1041. https://doi.org/10.3389/fmicb.2015.01041
    • (2015) Front Microbiol , vol.6 , pp. 1041
    • Paixão, L.1    Caldas, J.2    Kloosterman, T.G.3    Kuipers, O.P.4    Vinga, S.5    Neves, A.R.6
  • 17
    • 84982292346 scopus 로고    scopus 로고
    • ManLMN is a glucose transporter and central metabolic regulator in Streptococcus pneumoniae
    • Fleming E, Camilli A. 2016. ManLMN is a glucose transporter and central metabolic regulator in Streptococcus pneumoniae. Mol Microbiol 102: 467-487. https://doi.org/10.1111/mmi.13473
    • (2016) Mol Microbiol , vol.102 , pp. 467-487
    • Fleming, E.1    Camilli, A.2
  • 18
    • 84875521042 scopus 로고    scopus 로고
    • Gene regulation by CcpA and catabolite repression explored by RNA-Seq in Streptococcus mutans
    • Zeng L, Choi SC, Danko CG, Siepel A, Stanhope MJ, Burne RA. 2013. Gene regulation by CcpA and catabolite repression explored by RNA-Seq in Streptococcus mutans. PLoS One 8:e60465. https://doi.org/10.1371/journal.pone.0060465
    • (2013) PLoS One , vol.8
    • Zeng, L.1    Choi, S.C.2    Danko, C.G.3    Siepel, A.4    Stanhope, M.J.5    Burne, R.A.6
  • 19
    • 84946201626 scopus 로고    scopus 로고
    • Loss of NADH oxidase activity in Streptococcus mutans leads to Rex-mediated overcompensation in NAD+ regeneration by lactate dehydrogenase
    • Baker JL, Derr AM, Faustoferri RC, Quivey RG, Jr. 2015. Loss of NADH oxidase activity in Streptococcus mutans leads to Rex-mediated overcompensation in NAD+ regeneration by lactate dehydrogenase. J Bacteriol 197:3645-3657. https://doi.org/10.1128/JB.00383-15
    • (2015) J Bacteriol , vol.197 , pp. 3645-3657
    • Baker, J.L.1    Derr, A.M.2    Faustoferri, R.C.3    Quivey, R.G.4
  • 20
    • 51649120143 scopus 로고    scopus 로고
    • Multiple sugar: phosphotransferase system permeases participate in catabolite modification of gene expression in Streptococcus mutans
    • Zeng L, Burne RA. 2008. Multiple sugar: phosphotransferase system permeases participate in catabolite modification of gene expression in Streptococcus mutans. Mol Microbiol 70:197-208. https://doi.org/10.1111/j.1365-2958.2008.06403.x
    • (2008) Mol Microbiol , vol.70 , pp. 197-208
    • Zeng, L.1    Burne, R.A.2
  • 21
    • 0035910180 scopus 로고    scopus 로고
    • Characterization of two operons that encode components of fructose-specific enzyme II of the sugar: phosphotransferase system of Streptococcus mutans
    • Wen ZT, Browngardt C, Burne RA. 2001. Characterization of two operons that encode components of fructose-specific enzyme II of the sugar: phosphotransferase system of Streptococcus mutans. FEMS Microbiol Lett 205:337-342. https://doi.org/10.1111/j.1574-6968.2001.tb10969.x
    • (2001) FEMS Microbiol Lett , vol.205 , pp. 337-342
    • Wen, Z.T.1    Browngardt, C.2    Burne, R.A.3
  • 22
    • 33748662003 scopus 로고    scopus 로고
    • A novel signal transduction system and feedback loop regulate fructan hydrolase gene expression in Streptococcus mutans
    • Zeng L, Wen ZT, Burne RA. 2006. A novel signal transduction system and feedback loop regulate fructan hydrolase gene expression in Streptococcus mutans. Mol Microbiol 62:187-200. https://doi.org/10.1111/j.1365-2958.2006.05359.x
    • (2006) Mol Microbiol , vol.62 , pp. 187-200
    • Zeng, L.1    Wen, Z.T.2    Burne, R.A.3
  • 23
    • 34447511583 scopus 로고    scopus 로고
    • Global transcriptional analysis of Streptococcus mutans sugar transporters using microarrays
    • Ajdić D, Pham VT. 2007. Global transcriptional analysis of Streptococcus mutans sugar transporters using microarrays. J Bacteriol 189:5049-5059. https://doi.org/10.1128/JB.00338-07
    • (2007) J Bacteriol , vol.189 , pp. 5049-5059
    • Ajdić, D.1    Pham, V.T.2
  • 24
    • 0021719209 scopus 로고
    • Isolation of a novel protein involved in the transport of fructose by an inducible phosphoenolpyruvate fructose phosphotransferase system in Streptococcus mutans
    • Gauthier L, Mayrand D, Vadeboncoeur C. 1984. Isolation of a novel protein involved in the transport of fructose by an inducible phosphoenolpyruvate fructose phosphotransferase system in Streptococcus mutans. J Bacteriol 160:755-763
    • (1984) J Bacteriol , vol.160 , pp. 755-763
    • Gauthier, L.1    Mayrand, D.2    Vadeboncoeur, C.3
  • 25
    • 79952048042 scopus 로고    scopus 로고
    • Genetic analysis of the functions and interactions of components of the LevQRST signal transduction complex of Streptococcus mutans
    • Zeng L, Das S, Burne RA. 2011. Genetic analysis of the functions and interactions of components of the LevQRST signal transduction complex of Streptococcus mutans. PLoS One 6:e17335. https://doi.org/10.1371/journal.pone.0017335
    • (2011) PLoS One , vol.6
    • Zeng, L.1    Das, S.2    Burne, R.A.3
  • 26
    • 18944388400 scopus 로고    scopus 로고
    • Fructose utilization in Lactococcus lactis as a model for low-GC Gram-positive bacteria: its regulator, signal, and DNA-binding site
    • Barrière C, Veiga-da-Cunha M, Pons N, Guedon E, van Hijum SA, Kok J, Kuipers OP, Ehrlich DS, Renault P. 2005. Fructose utilization in Lactococcus lactis as a model for low-GC Gram-positive bacteria: its regulator, signal, and DNA-binding site. J Bacteriol 187:3752-3761. https://doi.org/10.1128/JB.187.11.3752-3761.2005
    • (2005) J Bacteriol , vol.187 , pp. 3752-3761
    • Barrière, C.1    Veiga-da-Cunha, M.2    Pons, N.3    Guedon, E.4    van Hijum, S.A.5    Kok, J.6    Kuipers, O.P.7    Ehrlich, D.S.8    Renault, P.9
  • 27
    • 0142214671 scopus 로고    scopus 로고
    • Involvement of an inducible fructose phosphotransferase operon in Streptococcus gordonii biofilm formation
    • Loo CY, Mitrakul K, Voss IB, Hughes CV, Ganeshkumar N. 2003. Involvement of an inducible fructose phosphotransferase operon in Streptococcus gordonii biofilm formation. J Bacteriol 185:6241-6254. https://doi.org/10.1128/JB.185.21.6241-6254.2003
    • (2003) J Bacteriol , vol.185 , pp. 6241-6254
    • Loo, C.Y.1    Mitrakul, K.2    Voss, I.B.3    Hughes, C.V.4    Ganeshkumar, N.5
  • 28
    • 84978976813 scopus 로고    scopus 로고
    • Transcriptome analysis of Streptococcus gordonii Challis DL1 indicates a role for the biofilm-associated fruRBA operon in response to Candida albicans
    • Jesionowski AM, Mansfield JM, Brittan JL, Jenkinson HF, Vickerman MM. 2016. Transcriptome analysis of Streptococcus gordonii Challis DL1 indicates a role for the biofilm-associated fruRBA operon in response to Candida albicans. Mol Oral Microbiol 31:314-328. https://doi.org/10.1111/omi.12125
    • (2016) Mol Oral Microbiol , vol.31 , pp. 314-328
    • Jesionowski, A.M.1    Mansfield, J.M.2    Brittan, J.L.3    Jenkinson, H.F.4    Vickerman, M.M.5
  • 29
    • 84962787083 scopus 로고    scopus 로고
    • The fruRBA operon is necessary for group A streptococcal growth in fructose and for resistance to neutrophil killing during growth in whole human blood
    • Valdes KM, Sundar GS, Vega LA, Belew AT, Islam E, Binet R, El-Sayed NM, Le Breton Y, McIver KS. 2016. The fruRBA operon is necessary for group A streptococcal growth in fructose and for resistance to neutrophil killing during growth in whole human blood. Infect Immun 84:1016-1031. https://doi.org/10.1128/IAI.01296-15
    • (2016) Infect Immun , vol.84 , pp. 1016-1031
    • Valdes, K.M.1    Sundar, G.S.2    Vega, L.A.3    Belew, A.T.4    Islam, E.5    Binet, R.6    El-Sayed, N.M.7    Le Breton, Y.8    McIver, K.S.9
  • 30
    • 84880296064 scopus 로고    scopus 로고
    • A galactose-specific sugar: phosphotransferase permease is prevalent in the non-core genome of Streptococcus mutans
    • Zeng L, Xue P, Stanhope MJ, Burne RA. 2013. A galactose-specific sugar: phosphotransferase permease is prevalent in the non-core genome of Streptococcus mutans. Mol Oral Microbiol 28:292-301. https://doi.org/10.1111/omi.12025
    • (2013) Mol Oral Microbiol , vol.28 , pp. 292-301
    • Zeng, L.1    Xue, P.2    Stanhope, M.J.3    Burne, R.A.4
  • 32
    • 33745875402 scopus 로고    scopus 로고
    • Identification of the DNA bases of a DNase I footprint by the use of dye primer sequencing on an automated capillary DNA analysis instrument
    • Zianni M, Tessanne K, Merighi M, Laguna R, Tabita FR. 2006. Identification of the DNA bases of a DNase I footprint by the use of dye primer sequencing on an automated capillary DNA analysis instrument. J Biomol Tech 17:103-113
    • (2006) J Biomol Tech , vol.17 , pp. 103-113
    • Zianni, M.1    Tessanne, K.2    Merighi, M.3    Laguna, R.4    Tabita, F.R.5
  • 33
    • 79951854037 scopus 로고    scopus 로고
    • Biology of Streptococcus mutans-derived glucosyltransferases: role in extracellular matrix formation of cariogenic biofilms
    • Bowen WH, Koo H. 2011. Biology of Streptococcus mutans-derived glucosyltransferases: role in extracellular matrix formation of cariogenic biofilms. Caries Res 45:69-86. https://doi.org/10.1159/000324598
    • (2011) Caries Res , vol.45 , pp. 69-86
    • Bowen, W.H.1    Koo, H.2
  • 34
    • 84894318608 scopus 로고    scopus 로고
    • Ribosome profiling: new views of translation, from single codons to genome scale
    • Ingolia NT. 2014. Ribosome profiling: new views of translation, from single codons to genome scale. Nat Rev Genet 15:205-213. https://doi.org/10.1038/nrg3645
    • (2014) Nat Rev Genet , vol.15 , pp. 205-213
    • Ingolia, N.T.1
  • 35
    • 84873534263 scopus 로고    scopus 로고
    • Comprehensive mutational analysis of sucrosemetabolizing pathways in Streptococcus mutans reveals novel roles for the sucrose phosphotransferase system permease
    • Zeng L, Burne RA. 2013. Comprehensive mutational analysis of sucrosemetabolizing pathways in Streptococcus mutans reveals novel roles for the sucrose phosphotransferase system permease. J Bacteriol 195: 833-843. https://doi.org/10.1128/JB.02042-12
    • (2013) J Bacteriol , vol.195 , pp. 833-843
    • Zeng, L.1    Burne, R.A.2
  • 36
    • 51149100535 scopus 로고    scopus 로고
    • Shuttle expression plasmids for genetic studies in Streptococcus mutans
    • Biswas I, Jha JK, Fromm N. 2008. Shuttle expression plasmids for genetic studies in Streptococcus mutans. Microbiology 154:2275-2282. https://doi.org/10.1099/mic.0.2008/019265-0
    • (2008) Microbiology , vol.154 , pp. 2275-2282
    • Biswas, I.1    Jha, J.K.2    Fromm, N.3
  • 39
    • 84858403229 scopus 로고    scopus 로고
    • GlmS and NagB regulate amino sugar metabolism in opposing directions and affect Streptococcus mutans virulence
    • Kawada-Matsuo M, Mazda Y, Oogai Y, Kajiya M, Kawai T, Yamada S, Miyawaki S, Oho T, Komatsuzawa H. 2012. GlmS and NagB regulate amino sugar metabolism in opposing directions and affect Streptococcus mutans virulence. PLoS One 7:e33382. https://doi.org/10.1371/journal.pone.0033382
    • (2012) PLoS One , vol.7
    • Kawada-Matsuo, M.1    Mazda, Y.2    Oogai, Y.3    Kajiya, M.4    Kawai, T.5    Yamada, S.6    Miyawaki, S.7    Oho, T.8    Komatsuzawa, H.9
  • 40
    • 84875034067 scopus 로고    scopus 로고
    • A novel phosphotransferase system of Streptococcus mutans is responsible for transport of carbohydrates with alpha-1, 3 linkage
    • Ajdic D, Chen Z. 2013. A novel phosphotransferase system of Streptococcus mutans is responsible for transport of carbohydrates with alpha-1, 3 linkage. Mol Oral Microbiol 28:114-128. https://doi.org/10.1111/omi.12009
    • (2013) Mol Oral Microbiol , vol.28 , pp. 114-128
    • Ajdic, D.1    Chen, Z.2
  • 41
    • 13444304499 scopus 로고    scopus 로고
    • A unique nine-gene comY operon in Streptococcus mutans
    • Merritt J, Qi F, Shi W. 2005. A unique nine-gene comY operon in Streptococcus mutans. Microbiology 151:157-166. https://doi.org/10.1099/mic.0.27554-0
    • (2005) Microbiology , vol.151 , pp. 157-166
    • Merritt, J.1    Qi, F.2    Shi, W.3
  • 42
    • 84858049821 scopus 로고    scopus 로고
    • The mutacins of Streptococcus mutans: regulation and ecology
    • Merritt J, Qi F. 2012. The mutacins of Streptococcus mutans: regulation and ecology. Mol Oral Microbiol 27:57-69. https://doi.org/10.1111/j.2041-1014.2011.00634.x
    • (2012) Mol Oral Microbiol , vol.27 , pp. 57-69
    • Merritt, J.1    Qi, F.2
  • 43
    • 77956577058 scopus 로고    scopus 로고
    • Genomic island TnSmu2 of Streptococcus mutans harbors a nonribosomal peptide synthetase-polyketide synthase gene cluster responsible for the biosynthesis of pigments involved in oxygen and H2O2 tolerance
    • Wu C, Cichewicz R, Li Y, Liu J, Roe B, Ferretti J, Merritt J, Qi F. 2010. Genomic island TnSmu2 of Streptococcus mutans harbors a nonribosomal peptide synthetase-polyketide synthase gene cluster responsible for the biosynthesis of pigments involved in oxygen and H2O2 tolerance. Appl Environ Microbiol 76:5815-5826. https://doi.org/10.1128/AEM.03079-09
    • (2010) Appl Environ Microbiol , vol.76 , pp. 5815-5826
    • Wu, C.1    Cichewicz, R.2    Li, Y.3    Liu, J.4    Roe, B.5    Ferretti, J.6    Merritt, J.7    Qi, F.8
  • 44
    • 0026623422 scopus 로고
    • Cloning of a locus involved in Streptococcus mutans intracellular polysaccharide accumulation and virulence testing of an intracellular polysaccharide-deficient mutant
    • Harris GS, Michalek SM, Curtiss R, 3rd. 1992. Cloning of a locus involved in Streptococcus mutans intracellular polysaccharide accumulation and virulence testing of an intracellular polysaccharide-deficient mutant. Infect Immun 60:3175-3185
    • (1992) Infect Immun , vol.60 , pp. 3175-3185
    • Harris, G.S.1    Michalek, S.M.2    Curtiss, R.3
  • 45
    • 0029040996 scopus 로고
    • Sequence, expression, and function of the gene for the nonphosphorylating, NADP-dependent glyceraldehyde-3-phosphate dehydrogenase of Streptococcus mutans
    • Boyd DA, Cvitkovitch DG, Hamilton IR. 1995. Sequence, expression, and function of the gene for the nonphosphorylating, NADP-dependent glyceraldehyde-3-phosphate dehydrogenase of Streptococcus mutans. J Bacteriol 177:2622-2627. https://doi.org/10.1128/jb.177.10.2622-2627.1995
    • (1995) J Bacteriol , vol.177 , pp. 2622-2627
    • Boyd, D.A.1    Cvitkovitch, D.G.2    Hamilton, I.R.3
  • 46
    • 0017341070 scopus 로고
    • Ribose biosynthesis in Streptococcus mutans
    • Bridges RB. 1977. Ribose biosynthesis in Streptococcus mutans. Arch Oral Biol 22:139-145. https://doi.org/10.1016/0003-9969(77)90091-7
    • (1977) Arch Oral Biol , vol.22 , pp. 139-145
    • Bridges, R.B.1
  • 47
    • 84979995661 scopus 로고    scopus 로고
    • The GlnR regulon in Streptococcus mutans is differentially regulated by GlnR and PmrA
    • Chen YY, Chen YY, Hung JL, Chen PM, Chia JS. 2016. The GlnR regulon in Streptococcus mutans is differentially regulated by GlnR and PmrA. PLoS One 11:e0159599. https://doi.org/10.1371/journal.pone.0159599
    • (2016) PLoS One , vol.11
    • Chen, Y.Y.1    Chen, Y.Y.2    Hung, J.L.3    Chen, P.M.4    Chia, J.S.5
  • 48
    • 84983083795 scopus 로고    scopus 로고
    • Comprehensive transcriptome profiles of Streptococcus mutans UA159 map core streptococcal competence genes
    • Khan R, Rukke HV, Hovik H, Amdal HA, Chen T, Morrison DA, Petersen FC. 2016. Comprehensive transcriptome profiles of Streptococcus mutans UA159 map core streptococcal competence genes. mSystems 1:e00038-15. https://doi.org/10.1128/mSystems.00038-15
    • (2016) mSystems , vol.1
    • Khan, R.1    Rukke, H.V.2    Hovik, H.3    Amdal, H.A.4    Chen, T.5    Morrison, D.A.6    Petersen, F.C.7
  • 50
    • 27744560433 scopus 로고    scopus 로고
    • Catabolite repression and activation in Bacillus subtilis: dependency on CcpA, HPr, and HprK
    • Lorca GL, Chung YJ, Barabote RD, Weyler W, Schilling CH, Saier MH, Jr. 2005. Catabolite repression and activation in Bacillus subtilis: dependency on CcpA, HPr, and HprK. J Bacteriol 187:7826-7839. https://doi.org/10.1128/JB.187.22.7826-7839.2005
    • (2005) J Bacteriol , vol.187 , pp. 7826-7839
    • Lorca, G.L.1    Chung, Y.J.2    Barabote, R.D.3    Weyler, W.4    Schilling, C.H.5    Saier, M.H.6
  • 51
    • 0032902762 scopus 로고    scopus 로고
    • Regulation of expression of the fructan hydrolase gene of Streptococcus mutans GS-5 by induction and carbon catabolite repression
    • Burne RA, Wen ZT, Chen YY, Penders JE. 1999. Regulation of expression of the fructan hydrolase gene of Streptococcus mutans GS-5 by induction and carbon catabolite repression. J Bacteriol 181:2863-2871
    • (1999) J Bacteriol , vol.181 , pp. 2863-2871
    • Burne, R.A.1    Wen, Z.T.2    Chen, Y.Y.3    Penders, J.E.4
  • 52
    • 0033965303 scopus 로고    scopus 로고
    • Streptococcus gordonii biofilm formation: identification of genes that code for biofilm phenotypes
    • Loo CY, Corliss DA, Ganeshkumar N. 2000. Streptococcus gordonii biofilm formation: identification of genes that code for biofilm phenotypes. J Bacteriol 182:1374-1382. https://doi.org/10.1128/JB.182.5.1374-1382.2000
    • (2000) J Bacteriol , vol.182 , pp. 1374-1382
    • Loo, C.Y.1    Corliss, D.A.2    Ganeshkumar, N.3
  • 53
    • 84971414853 scopus 로고    scopus 로고
    • Amino sugars enhance competitiveness of beneficial commensals with Streptococcus mutans through multiple mechanisms
    • Zeng L, Farivar T, Burne RA. 2016. Amino sugars enhance competitiveness of beneficial commensals with Streptococcus mutans through multiple mechanisms. Appl Environ Microbiol 82:3671-3682. https://doi.org/10.1128/AEM.00637-16
    • (2016) Appl Environ Microbiol , vol.82 , pp. 3671-3682
    • Zeng, L.1    Farivar, T.2    Burne, R.A.3
  • 55
    • 0036164801 scopus 로고    scopus 로고
    • PCR ligation mutagenesis in transformable streptococci: application and efficiency
    • Lau PC, Sung CK, Lee JH, Morrison DA, Cvitkovitch DG. 2002. PCR ligation mutagenesis in transformable streptococci: application and efficiency. J Microbiol Methods 49:193-205. https://doi.org/10.1016/S0167-7012 (01)00369-4
    • (2002) J Microbiol Methods , vol.49 , pp. 193-205
    • Lau, P.C.1    Sung, C.K.2    Lee, J.H.3    Morrison, D.A.4    Cvitkovitch, D.G.5
  • 56
    • 84926507971 scopus 로고    scopus 로고
    • limma powers differential expression analyses for RNA-sequencing and microarray studies
    • Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, Smyth GK. 2015. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res 43:e47. https://doi.org/10.1093/nar/gkv007
    • (2015) Nucleic Acids Res , vol.43
    • Ritchie, M.E.1    Phipson, B.2    Wu, D.3    Hu, Y.4    Law, C.W.5    Shi, W.6    Smyth, G.K.7
  • 57
    • 84944607716 scopus 로고    scopus 로고
    • NagR differentially regulates the expression of the glmS and nagAB genes required for amino sugar metabolism by Streptococcus mutans
    • Zeng L, Burne RA. 2015. NagR differentially regulates the expression of the glmS and nagAB genes required for amino sugar metabolism by Streptococcus mutans. J Bacteriol 197:3533-3544. https://doi.org/10.1128/JB.00606-15
    • (2015) J Bacteriol , vol.197 , pp. 3533-3544
    • Zeng, L.1    Burne, R.A.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.