메뉴 건너뛰기




Volumn , Issue , 2007, Pages 697-706

Weighting versus pruning in rule validation for detecting network and host anomalies

Author keywords

Anomaly detection; Machine learning; Rule pruning; Rule weighting

Indexed keywords

COMPUTATIONAL METHODS; COMPUTER NETWORKS; DATA MINING;

EID: 36849030790     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/1281192.1281267     Document Type: Conference Paper
Times cited : (30)

References (34)
  • 1
    • 0002221136 scopus 로고
    • Fast algorithms for mining association rules
    • R. Agrawal and R. Srikant. Fast algorithms for mining association rules. In VLDB, 1994.
    • (1994) VLDB
    • Agrawal, R.1    Srikant, R.2
  • 2
    • 36849071079 scopus 로고    scopus 로고
    • D. Anderson, T. Lunt, H. Javitz, A. Tamaru, and A. Valdes. Detecting unusual program behavior using the statistical component of the next generation intrusion detection expert system (nides). Technical Report SRI-CSL-95-06, Computer Science Laboratory SRI, 1995.
    • D. Anderson, T. Lunt, H. Javitz, A. Tamaru, and A. Valdes. Detecting unusual program behavior using the statistical component of the next generation intrusion detection expert system (nides). Technical Report SRI-CSL-95-06, Computer Science Laboratory SRI, 1995.
  • 3
    • 36849043325 scopus 로고    scopus 로고
    • D. Barbara, J. Couto, S. Jajodia, L. Popyack, and N. Wu. Adam: Detecting intrusions by data mining. In IEEE Workshop on Information Assurance and Security, 2001.
    • D. Barbara, J. Couto, S. Jajodia, L. Popyack, and N. Wu. Adam: Detecting intrusions by data mining. In IEEE Workshop on Information Assurance and Security, 2001.
  • 5
    • 0030819669 scopus 로고    scopus 로고
    • Empirical support for winnow and weighted-majority algorithms: Results on a calendar scheduling domain
    • A. Blum. Empirical support for winnow and weighted-majority algorithms: Results on a calendar scheduling domain. Machine Learning, 26(5):5-23, 1997.
    • (1997) Machine Learning , vol.26 , Issue.5 , pp. 5-23
    • Blum, A.1
  • 6
    • 34249966007 scopus 로고
    • The CN2 induction algorithm
    • P. Clark and T. Niblett. The CN2 induction algorithm. Machine Learning, 3:261-285, 1989.
    • (1989) Machine Learning , vol.3 , pp. 261-285
    • Clark, P.1    Niblett, T.2
  • 7
    • 85149612939 scopus 로고
    • Fast effective rule induction
    • W. Cohen. Fast effective rule induction. In ICML, pages 115-123, 1995.
    • (1995) ICML , pp. 115-123
    • Cohen, W.1
  • 9
    • 14844342344 scopus 로고    scopus 로고
    • The many faces of roc analysis in machine learning
    • P. Flach. The many faces of roc analysis in machine learning. In ICML Tutorial, 2004.
    • (2004) ICML Tutorial
    • Flach, P.1
  • 11
    • 0002978642 scopus 로고    scopus 로고
    • Experiments with a new boosting algorithm
    • Y. Freund and R. Schapire. Experiments with a new boosting algorithm. In ICML, pages 148-156, 1996.
    • (1996) ICML , pp. 148-156
    • Freund, Y.1    Schapire, R.2
  • 12
    • 0031139832 scopus 로고    scopus 로고
    • Pruning algorithms for rule learning
    • J. Furnkranz. Pruning algorithms for rule learning. Machine Learning, 27:139-171, 1997.
    • (1997) Machine Learning , vol.27 , pp. 139-171
    • Furnkranz, J.1
  • 14
    • 85084160308 scopus 로고    scopus 로고
    • A study in using neural networks for anomaly and misuse detection
    • A. Ghosh and A. Schwartzbard. A study in using neural networks for anomaly and misuse detection. In USENIX Security Symposium, 1999.
    • (1999) USENIX Security Symposium
    • Ghosh, A.1    Schwartzbard, A.2
  • 16
    • 36849095265 scopus 로고    scopus 로고
    • Service specific anomaly detection for network intrusion detection
    • C. Krugel, T. Toth, and E. Kirda. Service specific anomaly detection for network intrusion detection. In ACM SAC, 2002.
    • (2002) ACM SAC
    • Krugel, C.1    Toth, T.2    Kirda, E.3
  • 18
    • 34250091945 scopus 로고
    • Learning quickly when irrelevant attributes abound: A new linear threshold algorithm
    • N. Littlestone. Learning quickly when irrelevant attributes abound: A new linear threshold algorithm. Machine Learning, 2:285-318, 1988.
    • (1988) Machine Learning , vol.2 , pp. 285-318
    • Littlestone, N.1
  • 20
    • 78149297786 scopus 로고    scopus 로고
    • Learning rules for anomaly detection of hostile network traffic
    • M. Mahoney and P. Chan. Learning rules for anomaly detection of hostile network traffic. In ICDM, 2003.
    • (2003) ICDM
    • Mahoney, M.1    Chan, P.2
  • 22
    • 85084164413 scopus 로고    scopus 로고
    • Bro: A system for detecting network intruders in real time
    • V. Paxson. Bro: A system for detecting network intruders in real time. In USENIX Security Symposium, 1998.
    • (1998) USENIX Security Symposium
    • Paxson, V.1
  • 25
    • 83455223163 scopus 로고    scopus 로고
    • Using generalization and characterization techniques in the anomaly-based detection of web attacks
    • W. Robertson, G. Vigna, C. Kruegel, and R. Kemmerer. Using generalization and characterization techniques in the anomaly-based detection of web attacks. In NDSS, 2006.
    • (2006) NDSS
    • Robertson, W.1    Vigna, G.2    Kruegel, C.3    Kemmerer, R.4
  • 26
    • 1642293015 scopus 로고    scopus 로고
    • Snort - lightweight intrusion detection for networks
    • M. Roesch. Snort - lightweight intrusion detection for networks. In USENIX LISA, 1999.
    • (1999) USENIX LISA
    • Roesch, M.1
  • 27
    • 0025448521 scopus 로고
    • The strength of weak learnability
    • R. Schapire. The strength of weak learnability. Machine Learning, 5:197-226, 1990.
    • (1990) Machine Learning , vol.5 , pp. 197-226
    • Schapire, R.1
  • 30
    • 33845599591 scopus 로고    scopus 로고
    • On the learning of system call attributes for host-based anomaly detection
    • G. Tandon and P. Chan. On the learning of system call attributes for host-based anomaly detection. Intl. Journal on AI Tools, 15(6):875-892, 2006.
    • (2006) Intl. Journal on AI Tools , vol.15 , Issue.6 , pp. 875-892
    • Tandon, G.1    Chan, P.2
  • 31
    • 0037957011 scopus 로고    scopus 로고
    • From association to classification: Inference using weight of evidence
    • Y. Wang and A. Wong. From association to classification: inference using weight of evidence. IEEE Trans. Knowledge and Data Engineering, 15(3), 2003.
    • (2003) IEEE Trans. Knowledge and Data Engineering , vol.15 , Issue.3
    • Wang, Y.1    Wong, A.2
  • 34
    • 0026187945 scopus 로고
    • The zero-frequency problem: Estimating the probabilities of novel events in adaptive text compression
    • I. Witten and T. Bell. The zero-frequency problem: estimating the probabilities of novel events in adaptive text compression. IEEE Trans. Info. Theory, 1991.
    • (1991) IEEE Trans. Info. Theory
    • Witten, I.1    Bell, T.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.