메뉴 건너뛰기




Volumn 18, Issue 10, 2017, Pages 1353-1361

A big data analytics platform for smart factories in small and medium-sized manufacturing enterprises: An empirical case study of a die casting factory

Author keywords

Big data analytics platform; Defective casting; Die casting process; Small and medium sized manufacturing enterprises; Smart factory

Indexed keywords

DATA ANALYTICS; DATA MINING; DEFECTS; DIE CASTING; INDUSTRIAL RESEARCH; LARGE DATASET; LEGACY SYSTEMS; MANUFACTURE;

EID: 85030856220     PISSN: 22347593     EISSN: 20054602     Source Type: Journal    
DOI: 10.1007/s12541-017-0161-x     Document Type: Article
Times cited : (53)

References (25)
  • 3
    • 85030854725 scopus 로고    scopus 로고
    • Smart Manufacturing Leadership Coalition, “Implementing 21st Century Smart Manufacturing,” https://smartmanufacturingcoalition. org/sites/default/files/implementing_21st_century_smart_manufacturing _report_2011_0.pdf (Accessed 25 AUG 2017)
    • (2017) Implementing 21st Century Smart Manufacturing
  • 5
    • 84955447916 scopus 로고    scopus 로고
    • Smart Manufacturing: Past Research, Present Findings, and Future Directions
    • Kang, H. S., Lee, J. Y., Choi, S., Kim, H., Park, J. H., et al., “Smart Manufacturing: Past Research, Present Findings, and Future Directions,” Int. J. Precis. Eng. Manuf.-Green Tech., Vol. 3, No. 1, pp. 111–128, 2016.
    • (2016) Int. J. Precis. Eng. Manuf.-Green Tech. , vol.3 , Issue.1 , pp. 111-128
    • Kang, H.S.1    Lee, J.Y.2    Choi, S.3    Kim, H.4    Park, J.H.5
  • 6
    • 85030855963 scopus 로고    scopus 로고
    • Ministry of Trade, Industry and Energy, “「Manufacturing Innovation 3.0」Initiative? Action Plans,” http://www.motie.go.kr/motie/ne/presse/press2/bbs/bbsView.do?bbs_seq_n=157086&bbs_cd_n=81 (Accessed 25 AUG 2017)
    • (2017) 「Manufacturing Innovation 3.0」Initiative? Action Plans
  • 8
    • 84983720438 scopus 로고    scopus 로고
    • What is Big Data? A Consensual Definition and a Review of Key Research Topics
    • De Mauro, A., Greco, M., and Grimaldi, M., “What is Big Data? A Consensual Definition and a Review of Key Research Topics,” Proc. of AIP Conferenc, pp. 97–104, 2015.
    • (2015) Proc. of AIP Conferenc , pp. 97-104
    • De Mauro, A.1    Greco, M.2    Grimaldi, M.3
  • 10
    • 84958527144 scopus 로고    scopus 로고
    • Big Data Analytics: A Literature Review Paper
    • Perner P. ed
    • Elgendy, N. and Elragal, A., “Big Data Analytics: A Literature Review Paper,” in: Industrial Conference on Data Mining, Perner, P., (Ed.), Springer, pp. 214–227, 2014.
    • (2014) Industrial Conference on Data Mining , pp. 214-227
    • Elgendy, N.1    Elragal, A.2
  • 11
    • 84905408361 scopus 로고    scopus 로고
    • Service Innovation and Smart Analytics for Industry 4.0 and Big Data Environment
    • Lee, J., Kao, H.-A., and Yang, S., “Service Innovation and Smart Analytics for Industry 4.0 and Big Data Environment,” Procedia CIRP, Vol. 16, pp. 3–8, 2014.
    • (2014) Procedia CIRP , vol.16 , pp. 3-8
    • Lee, J.1    Kao, H.-A.2    Yang, S.3
  • 12
    • 84871857828 scopus 로고    scopus 로고
    • Big Data: The Management Revolution
    • McAfee, A. and Brynjolfsson, E., “Big Data: The Management Revolution,” Harvard Business Review, Vol. 90, No. 10, pp. 60–68, 2012.
    • (2012) Harvard Business Review , vol.90 , Issue.10 , pp. 60-68
    • McAfee, A.1    Brynjolfsson, E.2
  • 16
    • 84991818987 scopus 로고    scopus 로고
    • Data Science and Its Relationship to Big Data and Data-Driven Decision Making
    • Provost, F. and Fawcett, T., “Data Science and Its Relationship to Big Data and Data-Driven Decision Making,” Big Data, Vol. 1, No. 1, pp. 51–59, 2013.
    • (2013) Big Data , vol.1 , Issue.1 , pp. 51-59
    • Provost, F.1    Fawcett, T.2
  • 20
    • 55649107774 scopus 로고    scopus 로고
    • Prevention of Defects in Castings Using Back Propagation Neural Networks
    • Karunakar, D. B. and Datta, G., “Prevention of Defects in Castings Using Back Propagation Neural Networks,” The International Journal of Advanced Manufacturing Technology, Vol. 39, Nos. 11-12, pp. 1111–1124, 2008.
    • (2008) The International Journal of Advanced Manufacturing Technology , vol.39 , Issue.11-12 , pp. 1111-1124
    • Karunakar, D.B.1    Datta, G.2
  • 21
    • 69649102176 scopus 로고    scopus 로고
    • Optimization of High-Pressure Die-Casting Process Parameters Using Artificial Neural Network
    • Zheng, J., Wang, Q., Zhao, P., and Wu, C., “Optimization of High-Pressure Die-Casting Process Parameters Using Artificial Neural Network,” The International Journal of Advanced Manufacturing Technology, Vol. 44, No. 7, pp. 667–674, 2009.
    • (2009) The International Journal of Advanced Manufacturing Technology , vol.44 , Issue.7 , pp. 667-674
    • Zheng, J.1    Wang, Q.2    Zhao, P.3    Wu, C.4
  • 22
    • 84879007805 scopus 로고    scopus 로고
    • Semiconductor Fault Detection and Classification for Yield Enhancement and Manufacturing Intelligence
    • Chien, C.-F., Hsu, C.-Y., and Chen, P.-N., “Semiconductor Fault Detection and Classification for Yield Enhancement and Manufacturing Intelligence,” Flexible Services and Manufacturing Journal, Vol. 25, No. 3, pp. 367–388, 2013.
    • (2013) Flexible Services and Manufacturing Journal , vol.25 , Issue.3 , pp. 367-388
    • Chien, C.-F.1    Hsu, C.-Y.2    Chen, P.-N.3
  • 23
    • 84891482265 scopus 로고    scopus 로고
    • Fault Diagnosis on Production Systems with Support Vector Machine and Decision Trees Algorithms
    • Demetgul, M., “Fault Diagnosis on Production Systems with Support Vector Machine and Decision Trees Algorithms,” The International Journal of Advanced Manufacturing Technology, Vol. 67, Nos. 9-12, pp. 2183–2194, 2013.
    • (2013) The International Journal of Advanced Manufacturing Technology , vol.67 , Issue.9-12 , pp. 2183-2194
    • Demetgul, M.1
  • 24
    • 85027944759 scopus 로고    scopus 로고
    • Online Monitoring and Fault Identification of Mean Shifts in Bivariate Processes Using Decision Tree Learning Techniques
    • He, S.-G., He, Z., and Wang, G. A., “Online Monitoring and Fault Identification of Mean Shifts in Bivariate Processes Using Decision Tree Learning Techniques,” Journal of Intelligent Manufacturing, Vol. 24, No. 1, pp. 25–34, 2013.
    • (2013) Journal of Intelligent Manufacturing , vol.24 , Issue.1 , pp. 25-34
    • He, S.-G.1    He, Z.2    Wang, G.A.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.