메뉴 건너뛰기




Volumn 36, Issue 4, 2017, Pages

Visual atribute transfer through deep image analogy

Author keywords

Deep matching; Image analogy; Transfer

Indexed keywords

INTERACTIVE COMPUTER GRAPHICS; SEMANTICS;

EID: 85030765921     PISSN: 07300301     EISSN: 15577368     Source Type: Journal    
DOI: 10.1145/3072959.3073683     Document Type: Conference Paper
Times cited : (392)

References (65)
  • 10
    • 18844364899 scopus 로고    scopus 로고
    • High accuracy optical flow estimation based on a theory for warping
    • T. Brox, A. Bruhn, N. Papenberg, and J. Weickert. 2004. High accuracy optical flow estimation based on a theory for warping. In Proc. ECCV.
    • (2004) Proc. ECCV
    • Brox, T.1    Bruhn, A.2    Papenberg, N.3    Weickert, J.4
  • 11
    • 85041923859 scopus 로고    scopus 로고
    • StyleBank: An explicit representation for neural image style transfer
    • Dongdong Chen, Lu Yuan, Jing Liao, Nenghai Yu, and Gang Hua. 2017. StyleBank: An Explicit Representation for Neural Image Style Transfer. In Proc. CVPR.
    • (2017) Proc. CVPR
    • Chen, D.1    Yuan, L.2    Liao, J.3    Yu, N.4    Hua, G.5
  • 14
    • 49249105096 scopus 로고    scopus 로고
    • A perception-based color space for illumination-invariant image processing
    • (2008)
    • Hamilton Y. Chong, Steven J. Gortler, and Todd Zickler. 2008. A Perception-based Color Space for Illumination-invariant Image Processing. ACM Trans. Graph. (Proc. of SIGGRAPH) 27, 3 (2008).
    • (2008) ACM Trans. Graph. (Proc. of SIGGRAPH) , vol.27 , pp. 3
    • Chong, H.Y.1    Gortler, S.J.2    Zickler, T.3
  • 18
    • 0035148826 scopus 로고    scopus 로고
    • Image quilting for texture synthesis and transfer
    • Alexei A Efros and William T Freeman. 2001. Image quilting for texture synthesis and transfer. In Proc. ACM SIGGRAPH. 341-346.
    • (2001) Proc. ACM SIGGRAPH , pp. 341-346
    • Efros, A.A.1    Freeman, W.T.2
  • 20
    • 84986301045 scopus 로고    scopus 로고
    • Split and match: Example-based adaptive patch sampling for unsupervised style transfer
    • Oriel Frigo, Neus Sabater, Julie Delon, and Pierre Hellier. 2016. Split and Match: Example-based Adaptive Patch Sampling for Unsupervised Style Transfer. In Proc. CVPR.
    • (2016) Proc. CVPR
    • Frigo, O.1    Sabater, N.2    Delon, J.3    Hellier, P.4
  • 21
    • 84965135705 scopus 로고    scopus 로고
    • Texture synthesis using convolutional neural networks
    • Leon Gatys, Alexander S Ecker, and Matthias Bethge. 2015. Texture synthesis using convolutional neural networks. In Proc. of NIPS.
    • (2015) Proc. of NIPS
    • Gatys, L.1    Ecker, A.S.2    Bethge, M.3
  • 22
    • 84980008011 scopus 로고    scopus 로고
    • A neural algorithm of artistic style
    • Leon A Gatys, Alexander S Ecker, and Matthias Bethge. 2016. A Neural Algorithm of Artistic Style. In Proc. CVPR.
    • (2016) Proc. CVPR
    • Gatys, L.A.1    Ecker, A.S.2    Bethge, M.3
  • 26
    • 84986268195 scopus 로고    scopus 로고
    • Eficient coarse-to-fine PatchMatch for large displacement optical flow
    • Yinlin Hu, Rui Song, and Yunsong Li. 2016. Eficient Coarse-To-Fine PatchMatch for Large Displacement Optical Flow. In Proc. CVPR.
    • (2016) Proc. CVPR
    • Hu, Y.1    Song, R.2    Li, Y.3
  • 27
    • 84990034290 scopus 로고    scopus 로고
    • Perceptual losses for real-time style transfer and super-resolution
    • (2016)
    • Justin Johnson, Alexandre Alahi, and Li Fei-Fei. 2016. Perceptual losses for real-time style transfer and super-resolution. Proc. ECCV (2016).
    • (2016) Proc. ECCV
    • Johnson, J.1    Alahi, A.2    Fei-Fei, L.3
  • 29
    • 84876231242 scopus 로고    scopus 로고
    • Imagenet classification with deep convolutional neural networks
    • Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. 2012. Imagenet classification with deep convolutional neural networks. In Proc. of NIPS.
    • (2012) Proc. of NIPS
    • Krizhevsky, A.1    Sutskever, I.2    Hinton, G.E.3
  • 30
    • 84905741277 scopus 로고    scopus 로고
    • Transient attributes for high-level understanding and editing of outdoor scenes
    • (2014)
    • Pierre-Yves Laffont, Zhile Ren, Xiaofeng Tao, Chao Qian, and James Hays. 2014. Transient Attributes for High-level Understanding and Editing of Outdoor Scenes. ACM Trans. Graph. (Proc. of SIGGRAPH) 33, 4 (2014).
    • (2014) ACM Trans. Graph. (Proc. of SIGGRAPH) , vol.33 , pp. 4
    • Laffont, P.-Y.1    Ren, Z.2    Tao, X.3    Qian, C.4    Hays, J.5
  • 32
    • 84986290423 scopus 로고    scopus 로고
    • Combining Markov random fields and convolutional neural networks for image synthesis
    • Chuan Li and Michael Wand. 2016a. Combining Markov Random Fields and Convolutional Neural Networks for Image Synthesis. In Proc. CVPR.
    • (2016) Proc. CVPR
    • Li, C.1    Wand, M.2
  • 34
    • 84907554465 scopus 로고    scopus 로고
    • Automating image morphing using structural similarity on a halfway domain
    • (2014)
    • Jing Liao, Rodolfo S. Lima, Diego Nehab, Hugues Hoppe, Pedro V. Sander, and Jinhui Yu 2014. Automating Image Morphing Using Structural Similarity on a Halfway Domain. ACM Trans. Graph. 33, 5 (2014).
    • (2014) ACM Trans. Graph. , vol.33 , pp. 5
    • Liao, J.1    Lima, R.S.2    Nehab, D.3    Hoppe, H.4    Sander, P.V.5    Yu, J.6
  • 35
    • 79953049203 scopus 로고    scopus 로고
    • SIFT flow: Dense correspondence across scenes and its applications
    • (2011)
    • Ce Liu, Jenny Yuen, and Antonio Torralba. 2011. SIFT Flow: Dense Correspondence Across Scenes and Its Applications. IEEE Trans. Pattern Anal. Mach. Intell. 33, 5 (2011).
    • (2011) IEEE Trans. Pattern Anal. Mach. Intell. , vol.33 , pp. 5
    • Liu, C.1    Yuen, J.2    Torralba, A.3
  • 36
    • 84937874835 scopus 로고    scopus 로고
    • Do convnets learn correspondence?
    • Jonathan L Long, Ning Zhang, and Trevor Darrell. 2014. Do convnets learn correspondence?. In Proc. of NIPS. 1601-1609.
    • (2014) Proc. of NIPS , pp. 1601-1609
    • Long, J.L.1    Zhang, N.2    Darrell, T.3
  • 37
    • 84986302323 scopus 로고    scopus 로고
    • Needle-match: Reliable patch matching under high uncertainty
    • Or Lotan and Michal Irani. 2016. Needle-Match: Reliable Patch Matching Under High Uncertainty. In Proc. CVPR.
    • (2016) Proc. CVPR
    • Lotan, O.1    Irani, M.2
  • 38
    • 3042535216 scopus 로고    scopus 로고
    • Distinctive image features from scale-invariant keypoints
    • (2004)
    • David G. Lowe. 2004. Distinctive Image Features from Scale-Invariant Keypoints. International Journal of Computer Vision 60, 2 (2004).
    • (2004) International Journal of Computer Vision , vol.60 , pp. 2
    • Lowe, D.G.1
  • 40
    • 0002836012 scopus 로고
    • An iterative image registration technique with an application to stereo vision
    • B. D. Lucas and T. Kanade. 1981. An iterative image registration technique with an application to stereo vision. In Proc. of Imaging Understanding Workshop.
    • (1981) Proc. of Imaging Understanding Workshop
    • Lucas, B.D.1    Kanade, T.2
  • 41
    • 33745874691 scopus 로고    scopus 로고
    • N-dimensional probablility density function transfer and its application to colour transfer
    • Francois Pitie, Anil C. Kokaram, and Rozenn Dahyot. 2005. N-Dimensional Probablility Density Function Transfer and Its Application to Colour Transfer. In Proc. ICCV.
    • (2005) Proc. ICCV
    • Pitie, F.1    Kokaram, A.C.2    Dahyot, R.3
  • 46
    • 84980004921 scopus 로고    scopus 로고
    • Painting style transfer for head portraits using convolutional neural networks
    • (2016)
    • Ahmed Selim, Mohamed Elgharib, and Linda Doyle. 2016. Painting Style Transfer for Head Portraits Using Convolutional Neural Networks. ACM Trans. Graph. (Proc. of SIGGRAPH) 35, 4 (2016).
    • (2016) ACM Trans. Graph. (Proc. of SIGGRAPH) , vol.35 , pp. 4
    • Selim, A.1    Elgharib, M.2    Doyle, L.3
  • 47
    • 34948845616 scopus 로고    scopus 로고
    • Matching local self-similarities across images and videos
    • Eli Shechtman and Michal Irani. 2007. Matching Local Self-Similarities across Images and Videos. In Proc. CVPR.
    • (2007) Proc. CVPR
    • Shechtman, E.1    Irani, M.2
  • 50
    • 84887839353 scopus 로고    scopus 로고
    • Data-driven hallucination of different times of day from a single outdoor photo
    • (2013)
    • Yichang Shih, Sylvain Paris, Frédo Durand, and William T Freeman. 2013. Data-driven hallucination of different times of day from a single outdoor photo. ACM Trans. Graph. (Proc. of SIGGRAPH) 32, 6 (2013).
    • (2013) ACM Trans. Graph. (Proc. of SIGGRAPH) , vol.32 , pp. 6
    • Shih, Y.1    Paris, S.2    Durand, F.3    Freeman, W.T.4
  • 54
    • 33745163277 scopus 로고    scopus 로고
    • Local color transfer via probabilistic segmentation by expectation-maximization
    • Yu-Wing Tai, Jiaya Jia, and Chi-Keung Tang. 2005. Local Color Transfer via Probabilistic Segmentation by Expectation-Maximization. In Proc. CVPR.
    • (2005) Proc. CVPR
    • Tai, Y.-W.1    Jia, J.2    Tang, C.-K.3
  • 56
    • 84898830536 scopus 로고    scopus 로고
    • DeepFlow: Large displacement optical flow with deep matching
    • Philippe Weinzaepfel, Jérôme Revaud, Zaid Harchaoui, and Cordelia Schmid. 2013. DeepFlow: Large displacement optical flow with deep matching. In Proc. ICCV.
    • (2013) Proc. ICCV
    • Weinzaepfel, P.1    Revaud, J.2    Harchaoui, Z.3    Schmid, C.4
  • 57
    • 77953849763 scopus 로고    scopus 로고
    • Transferring color to greyscale images
    • (2002)
    • Tomihisa Welsh, Michael Ashikhmin, and Klaus Mueller. 2002. Transferring Color to Greyscale Images. Proc. ACM SIGGRAPH 21, 3 (2002).
    • (2002) Proc. ACM SIGGRAPH , vol.21 , pp. 3
    • Welsh, T.1    Ashikhmin, M.2    Mueller, K.3
  • 61
    • 84911360282 scopus 로고    scopus 로고
    • DAISY filter flow: A generalized discrete approach to dense correspondences
    • Hongsheng Yang, Wen-Yan Lin, and Jiangbo Lu. 2014. DAISY Filter Flow: A Generalized Discrete Approach to Dense Correspondences. In Proc. CVPR.
    • (2014) Proc. CVPR
    • Yang, H.1    Lin, W.-Y.2    Lu, J.3
  • 62
    • 84921476116 scopus 로고    scopus 로고
    • Visualizing and understanding convolutional networks
    • Matthew D. Zeiler and Rob Fergus. 2014. Visualizing and understanding convolutional networks. In Proc. ECCV.
    • (2014) Proc. ECCV
    • Zeiler, M.D.1    Fergus, R.2
  • 64
    • 84986260188 scopus 로고    scopus 로고
    • Learning dense correspondence via 3D-guided cycle consistency
    • Tinghui Zhou, Philipp Krähenbühl, Mathieu Aubry, Qixing Huang, and Alexei A. Efros. 2016. Learning Dense Correspondence via 3D-guided Cycle Consistency. In Proc. CVPR.
    • (2016) Proc. CVPR
    • Zhou, T.1    Krähenbühl, P.2    Aubry, M.3    Huang, Q.4    Efros, A.A.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.